首页 > 论文 > 光学学报 > 38卷 > 9期(pp:923001--1)

微型倒装AlGaInP发光二极管阵列器件的光电性能

Photoelectric Characteristics of Micro Flip-Chip AlGaInP Light Emitting Diode Array

班章  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为进一步提高红光微型发光二极管(LED)阵列器件的能量利用效率,对倒装AlGaInP LED阵列器件的光电性能进行研究。首先,测试对比了垂直型和倒装型AlGaInP LED两种芯片结构的出光性能,表明倒装型LED具有更高的出光功率。其次,建立了倒装型LED阵列出光功率模型,计算得到了出光功率与环境温度、基底热阻的关系:随基底热阻增大、环境温度升高,AlGaInP LED阵列器件的出光功率逐渐降低,出光饱和处对应的注入电流前移,光电性能逐渐下降。然后,采用转印法制备了6×6倒装AlGaInP LED阵列,测试结果表明,理论与实测结果较为一致。最后,利用有限元软件计算分析了Cu和聚二甲基硅氧烷(PDMS)这两种常见基底的热阻随环境、结构变化的数值关系。结果显示:Cu基底的散热较为均匀,优化基底结构或增加空气对流速率,对Cu基底热阻值的改变相对较小;PDMS材料的散热均匀性相对较差,通过优化基底结构、增大空气对流速率可以有效降低基底热阻,改善微型LED阵列器件的光电性能。

Abstract

In order to improve the energy utilization of red LED array devices, we study the photoelectric characteristics of flip-chip AlGaInP-based light emitting diode (LED) array device. Firstly, the light output power characteristics of AlGaInP-based LED with vertical type and flip-chip type structures are tested and compared with each other. The results show that the light output power of flip-chip LED is higher than that of the vertical LED. Then, a model to calculate the output power of flip-chip LED array is proposed, which is used to calculate the relationship between light output power, ambient temperature and base thermal resistance. The results reveal that with the increase of the base thermal resistance and ambient temperature, the output power of the LED array device decreases, the injection current at saturation shifts forward, and the photoelectric performance of LED array decreases. The 6×6 flip-chip AlGaInP-based LED array device is prepared using the transfer method. The testing results are consistent with the theoretical predictions. Finally, the numerical relationships between the thermal resistance of Cu and polydimethylsiloxane (PDMS) with different basement structures and ambient conditions are analyzed by finite element method. The results show that the heat dissipation capacity of Cu is relatively uniform and its thermal resistance is not sensitive to the structure and the air convection rate. However, for PDMS materials, the thermal resistance is relatively large and can be effectively reduced by optimizing its structure and increasing the air convection rate, thereby improve the photoelectric performance of the micro LED array device.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/aos201838.0923001

所属栏目:光学器件

基金项目:国家自然科学基金(61274122)、吉林省科技发展计划(20160204007GX,20180201024GX)、广东省科技发展计划(2016B010111003)、中国科学院创新促进会基金(2014193,2018254)、长春市科技计划(2013269)

收稿日期:2018-03-15

修改稿日期:2018-04-13

网络出版日期:2018-04-16

作者单位    点击查看

班章:中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033中国科学院大学, 北京 100049

联系人作者:梁静秋(liangjq@ciomp.ac.cn); 班章(banzhang0711@163.com);

【1】Jiang H X, Lin J Y. Nitride micro-LEDs and beyond—a decade progress review[J]. Optics Express, 2013, 21(S3): A475-A484.

【2】Moreno I, Avendao-Alejo M, Tzonchev R I. Designing light-emitting diode arrays for uniform near-field irradiance[J]. Applied Optics, 2006, 45(10): 2265-2272.

【3】Hua H, Mao X L, Tan J H, et al. Dynamic illumination design method based on LED array[J]. Laser & Optoelectronics Progress, 2017, 54(10): 102202.
花卉, 毛祥龙, 谭家海, 等. 基于LED阵列的动态照明设计方法[J]. 激光与光电子学进展, 2017, 54(10): 102202.

【4】Herrnsdorf J, McKendry J J D, Zhang S L, et al. Active-matrix GaN micro light-emitting diode display with unprecedented brightness[J]. IEEE Transactions on Electron Devices, 2015, 62(6): 1918-1925.

【5】Zhao J L, Chong W C, Wong K M, et al. A novel BLU-free full-color LED projector using LED on silicon micro-displays[J]. IEEE Photonics Technology Letters, 2013, 25(23): 2267-2270.

【6】Chi N, Lu X Y, Wang C, et al. High-speed visible light communication based on LED[J]. Chinese Journal of Lasers, 2017, 44(3): 0300001.
迟楠, 卢星宇, 王灿, 等. 基于LED的高速可见光通信[J]. 中国激光, 2017, 44(3): 0300001.

【7】Gong Z, Jin S R, Chen Y J, et al. Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes[J]. Journal of Applied Physics, 2010, 107(1): 013103.

【8】Zhao L, Peng K. Optimization of light source layout in indoor visible light communication based on white light-emitting diode[J]. Acta Optica Sinica, 2017, 37(7): 0706001.
赵黎, 彭恺. 基于白光发光二极管的室内可见光通信光源布局优化[J]. 光学学报, 2017, 37(7): 0706001.

【9】Lee S H, Jeong C K, Hwang G T, et al. Self-powered flexible inorganic electronic system[J]. Nano Energy, 2015, 14: 111-125.

【10】Bao X Z, Liang J Q, Liang Z Z, et al. Current density and irradiance distribution of light-emitting-diode-array device with divided pixels[J]. Chinese Journal of Luminescence, 2016, 37(11): 1399-1407.
包兴臻, 梁静秋, 梁中翥, 等. 像素分割对LED电流密度及光照度分布的影响[J]. 发光学报, 2016, 37(11): 1399-1407.

【11】Yadav A, Strassburg M, Rafailov E U. AlGaInP red-emitting light emitting diode under extremely high pulsed pumping[J]. Proceedings of SPIE, 2016, 9768: 97681K.

【12】Gao D, Wang W B, Liang Z Z, et al. Design of micro, flexible light-emitting diode arrays and fabrication of flexible electrodes[J]. Journal of Physics D, 2016, 49(40): 405108.

【13】Dong Y B, Han J, Xu C, et al. High light extraction efficiency AlGaInP LEDs with proton implanted current blocking layer[J]. IEEE Electron Device Letters, 2016, 37(10): 1303-1306.

【14】Bao X Z, Liang J Q, Liang Z Z, et al. Design and fabrication of AlGaInP-based micro-light-emitting-diode array devices[J]. Optics and Laser Technology, 2016, 78: 34-41.

【15】Tu S H, Chen J C, Hwu F S, et al. Characteristics of current distribution by designed electrode patterns for high power ThinGaN LED[J]. Solid-State Electronics, 2010, 54(11): 1438-1443.

【16】Schubert E F. Light-emitting diodes[M]. [S.l.]: John Wiley & Sons, Inc., 2014: 102-111.

【17】Xi Y, Schubert E F. Junction-temperatures in GaN UV light-emitting diodes using the diode forward voltage[C]∥Proceedings of IEEE Lester Eastman Conference on High Performance Devices, 2005: 84-89.

【18】Liu G. Fabrication and testing of micro flat heat pipes for light-emitting diode modules[D]. Dalian: Dalian University of Technology, 2014: 1-12.
刘刚. 面向LED散热的微平板热管的制造及测试[D]. 大连: 大连理工大学, 2014: 1-12.

【19】Biber C. LED light emission as a function of thermal conditions[C]∥Twenty-Fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium. 2008: 9964389.

【20】Garcia J, Dalla-Costa M A, Cardesin J, et al. Dimming of high-brightness LEDs by means of luminous flux thermal estimation[J]. IEEE Transactions on Power Electronics, 2009, 24(4): 1107-1114.

【21】Fang S W, Wang W B, Liang J Q, et al. Heat dissipation analysis of bendable AlGaInP micro-LED arrays[J]. AIP Advances, 2017, 7(1): 015209.

【22】Ban Z, Liang Z Z, Liang J Q, et al. Thermal analysis and design of AlGaInP-based light emitting diode arrays[J]. Current Optics and Photonics, 2017, 1(2): 143-149.

引用该论文

Ban Zhang,Liang Jingqiu,Lü Jinguang,Li Yang. Photoelectric Characteristics of Micro Flip-Chip AlGaInP Light Emitting Diode Array[J]. Acta Optica Sinica, 2018, 38(9): 0923001

班章. 微型倒装AlGaInP发光二极管阵列器件的光电性能[J]. 光学学报, 2018, 38(9): 0923001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF