首页 > 论文 > 光学学报 > 38卷 > 9期(pp:910004--1)

一种高光谱图像高精度配准波段选择方法

Band Selection Method for High Precision Registration of Hyperspectral Image

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对高光谱图像和高空间分辨率图像配准过程中,各波段之间差异较大难以选择高精度配准波段的问题,提出一种基于Cram′er-Rao下限(CRLB)理论的高光谱图像高精度匹配波段选择算法。利用波段选择的方法选出高光谱图像中若干信息量大、相关性小的波段;将其分别与高空间分辨率图像做配准,并计算配准结果相应的CRLB;根据CRLB选择高精度配准波段。通过比较配准后的CRLB和均方根误差,验证CRLB具有较好配准质量评价性能。通过CRLB与其他方法的选择波段配准结果比较可知,本文算法选择的波段配准精度较高。上述波段为高光谱图像和高空间分辨率图像的配准提供更好的数据。

Abstract

Aiming at the process of the registration of hyperspectral images and high spatial resolution images, it is difficult to choose the high-precision registration band because of the large difference between the bands of hyperspectral images. An algorithm for selecting high precision matching band of hyperspectral image based on Cram′er-Rao lower limit (CRLB) theory is proposed. Several bands with large amount of information and a small correlation in the hyperspectral image are selected by the band selection method. These bands are registered with the high spatial resolution image, respectively. The CRLB for each band′s registration result is calculated. The high accuracy registration band is selected according to CRLB. The CRLB's registration quality evaluation performance is verified to be better by comparing CRLB and root mean square errors after each registration. And compared with the selected band registration results of CRLB and other methods, it is proved that the accuracy of the band registration selected by the proposed algorithm is high. The above band provides better data for the registration of hyperspectral images and high spatial resolution images.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN911.73;TP391

DOI:10.3788/aos201838.0910004

所属栏目:图像处理

基金项目:国家自然科学基金(61671408)

收稿日期:2018-03-19

修改稿日期:2018-04-02

网络出版日期:2018-05-02

作者单位    点击查看

杨韩:浙江大学电气工程学院, 浙江 杭州 310027
厉小润:浙江大学电气工程学院, 浙江 杭州 310027
赵辽英:浙江大学电气工程学院, 浙江 杭州 310027
陈淑涵:浙江大学电气工程学院, 浙江 杭州 310027

联系人作者:厉小润(lxrly@zju.edu.cn)

【1】Li J, Peng Q M, Fan Z H. A survey of sub-pixel image registration method[J]. Journal of Image and Graphics, 2008, 13(11): 2070-2075.
黎俊, 彭启民, 范植华.亚像素级图像配准算法研究[J].中国图象图形学报, 2008, 13(11): 2070-2075.

【2】Gao D Y, Zhao X A, Pan X. Cross-correlation image registration based on sparse fast fourier[J]. Journal of Beijing University of Civil Engineering and Architecture, 2017(2): 25-28, 64.
高东阳, 赵西安, 潘昕. 基于稀疏快速傅里叶的互相图像配准[J]. 北京建筑大学学报, 2017(2): 25-28, 64.

【3】He R J, Rao L Y, Liu S, et al.The method of maximum mutual information for biomedical electromagnetic inverse problems[J]. IEEE Transactions on Magnetics, 2000, 36(4): 1741-1744.

【4】Bhati S H, Pati U C. Phase correlation based algorithm using fast fourier transform for fingerprint mosaicing[C]∥Proceedings of 3rd International Conference on Advanced Computing, Networking and Informatics, 2016: 507-514.

【5】Wu Y Q, Wang Z L. Remote sensing image registration algorithm based on improved SURF in wavelet domain[J]. Journal of Tianjin University (Science and Techonolgy), 2017, 50(10): 1084-1092.
吴一全, 王志来. 基于小波域改进SURF的遥感图像配准算法[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(10): 1084-1092.

【6】He P P, Wan Y C, Yang W, et al. Automatic registration of urban laser point cloud with aerial image data based on straight-lines[J]. Acta Optica Sinica, 2015, 35(5): 0528001.
何培培, 万幼川, 杨威, 等. 基于线特征的城区激光点云与影像自动配准[J]. 光学学报, 2015, 35(5): 0528001.

【7】Huang Y, Da F P, Tao H Q. An automatic registration algorithm for point cloud based on feature extraction[J]. Chinese Journal of Lasers, 2015, 42(3): 0308002.
黄源, 达飞鹏, 陶海跻. 一种基于特征提取的点云自动配准算法[J]. 中国激光, 2015, 42(3): 0308002.

【8】Qiao C, Ding Y L, Xu Y S, et al. Image registration method based on geo-location information and precision analysis[J]. Acta Optica Sinica, 2017, 37(8): 0828001.
乔川, 丁亚林, 许永森, 等. 基于地理位置信息的图像配准方法及精度分析[J]. 光学学报, 2017, 37(8): 0828001.

【9】Li X H, Yao J. Normalized product correlation Brisk image registration algorithm[J]. Journal of Changchun University of Technology (Natural Science Edition), 2017(2): 167-173.
李秀华, 姚佳. 归一化积相关Brisk图像配准算法[J]. 长春工业大学学报(自然科学版), 2017(2): 167-173.

【10】Zhang H J, Li G H, Liu C, et al. Reliable initial guess based on SURF feature matching in digital image correlation[J]. Acta Optica Sinica, 2013, 33(11): 1112005.
张华俊, 李桂华, 刘程, 等. 基于SURF特征匹配的数字图像相关变形初值可靠估计[J]. 光学学报, 2013, 33(11): 1112005.

【11】Xu M, Chen H, Varshney P K. Registration of high-dimensional remote sensing data based on a new dimensionality reduction rule[C]∥Proceedings of IEEE International Conference on Image Processing, 2009: 581-584.

【12】Goncalves H, Corte-Real L, Goncalves J A, Automatic image registration through image segmentation and SIFT[J]. IEEE Transactions on Geoscience & Remote Sensing, 2011, 49(7): 2589-2600.

【13】Wang Y, Yan C X. Sub-pixel image registration of spectrometer images[J]. Optics and Precision Engineering, 2012, 20(3): 661-667.
王运, 颜昌翔. 光谱仪图像的亚像素配准[J]. 光学 精密工程, 2012, 20(3): 661-667.

【14】Cheng H, Du X P, Xia L R, et al. Registration method for hyperspectral image based on control points[J]. Journal of Academy of Equipment, 2013, 24(3): 109-113.
陈杭, 杜小平, 夏鲁瑞, 等. 基于控制点的一种高光谱图像配准方法[J]. 装备学院学报, 2013, 24(3): 109-113.

【15】Kay S M. Fundamentals of statistical signal processing: estimation theory[M]. Englewood Cliff: Prentice hall, 1993.

【16】Bond J S, Matters G L, Banerjee S, et al. Performance of optimal registration estimators[J]. Proceedings of the SPIE, 2005, 5817(15): 133-144.

【17】Yetik I S, Nehorai A. Performance bounds on image registration[J]. IEEE Transactions on Signal Processing, 2006, 54(5): 1737-1749.

【18】Xu B S, Shi Z L, Chen F L. Image registration error characterization method based on Cramer-Rao lower bound [C]∥National Academic Conference on Iinformation Acquisition and Processing, 2012: 338-341.
徐保树, 史泽林, 陈法领. 基于Cramer-Rao下限的图像配准误差表征方法[C]∥全国信息获取与处理学术会议, 2012: 338-341.

【19】Li J, Huang P K, Wang X H. Registration precision study based on CRLB theory for optical base image and SAR image[J]. Journal of Astronautics, 2009, 30(5): 2049-2055.
李静, 黄培康, 王小虎, 等. 基于CRLB理论的光学基准图与SAR图像匹配精度研究[J]. 宇航学报, 2009, 30(5): 2049-2055.

【20】Wang Q, Yang G, Zhang J F, et al. Band selection based on local joint skewness and kurtosis for Hyperspectral image[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111004.
王琪, 杨桄, 张俭峰, 等. 基于局部联合偏度-峰度的高光谱图像波段选择方法[J]. 激光与光电子学进展, 2017, 54(11): 111004.

【21】Wang Z, Wang B H, Wang Y T. A survey of the band selection for the hyperspectral remote sensing image[C]∥The 11th National Symposium on Safe Geophysics, 2015.
王喆, 王百合,王艺婷. 高光谱图像波段选择方法综述[C]∥第十一届国家安全地球物理专题研讨会, 2015.

【22】Gong M, Zhao S, Jiao L, et al. A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(7): 4328-4338.

【23】Lowe D G. Distinctive image features from scale-ivariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

引用该论文

Yang Han,Li Xiaorun,Zhao Liaoying,Chen Shuhan. Band Selection Method for High Precision Registration of Hyperspectral Image[J]. Acta Optica Sinica, 2018, 38(9): 0910004

杨韩,厉小润,赵辽英,陈淑涵. 一种高光谱图像高精度配准波段选择方法[J]. 光学学报, 2018, 38(9): 0910004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF