首页 > 论文 > 光学学报 > 38卷 > 9期(pp:912003--1)

主动热激励式红外热成像管道缺陷深度检测

Depth Test of Pipeline Defects by Active Thermal Excitation and Infrared Thermography

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对管道内壁缺陷深度检测的问题,建立了一种基于电涡流主动热激励的红外热成像管道缺陷深度检测方法。阐述了红外热成像管道缺陷深度检测的机理,针对埋地管道检测对热激励的特殊要求,设计了参数可调控的电涡流热激励实验装置,按照管道内壁形状制作了检测试件,通过基于电涡流的主动热激励实验,分析了谐振频率、提离高度、输入电功率这3个重要参数对热激励效率的影响,并得出它们的优化值。在此基础上,对预先设计带有不同深度缺陷的检测试件进行主动热激励,并获取其红外热图像,通过分析热图像数据发现,缺陷与非缺陷区域间灰度均值的差值随缺陷深度的变化而变化,一在定条件下二者呈单值对应关系,且具有较好的线性度。利用这一规律,通过实验数据拟合建立了槽形缺陷和圆形缺陷的深度检测模型,实验测试显示所建立的模型具有一定的检测精度。研究结果表明:在优化的电涡流主动热激励条件下,可以通过红外热图像计算出缺陷深度,所提出的基于电涡流主动热激励的红外热成像管道缺陷深度检测方法具有可行性。

Abstract

Aiming at depth test of pipeline inwall defects, we propose a method of measuring the depth of pipeline defects, which based on the active thermal excitation by eddy current and infrared thermography. The theory of infrared imaging pipeline defects measuring is described. According to the special requirements of buried pipeline detection, a test device of eddy current thermal excitation with adjustable parameters is designed. Some specimens are fabricated according to the shape of the pipeline. With the active thermal excitation experiment based on eddy current, the influences of three important parameters, such as resonant frequency, lift-off distance and input electrical power on thermal excitation efficiency are analyzed, and the optimized values are obtained. Based on the above work, the infrared images of specimens with pre-designed defects which have different depths are acquired. The thermal image data analysis shows that the difference of grayscale between the defects and the non-defective areas varies with the defect depth, and the two factors show a single value correspondence, which has a good linearity under certain conditions. The defect depth detection model of groove-like and circular defects are established by the law. The experimental results show that the established model has certain detection accuracy. The research results show that the depth of defect can be calculated by infrared thermal image under the optimized active eddy current excitation condition. The proposed method based on active eddy current excitation of infrared thermal imaging pipeline is feasible.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG115.28

DOI:10.3788/aos201838.0912003

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金(51365019)

收稿日期:2018-03-20

修改稿日期:2018-04-12

网络出版日期:2018-04-17

作者单位    点击查看

王卓:昆明理工大学信息工程与自动化学院, 云南 昆明 650500
张云伟:昆明理工大学信息工程与自动化学院, 云南 昆明 650500
喻勇:昆明理工大学信息工程与自动化学院, 云南 昆明 650500
樊阳阳:昆明理工大学信息工程与自动化学院, 云南 昆明 650500

联系人作者:张云伟(1657824262@qq.com); 王卓(824976084@qq.com);

【1】Shen G T, Jing W K. Review of nondestructive testing technique for buried pipelines[J]. Nondestructive Testing, 2006, 28(3): 137-150.
沈功田, 景为科. 埋地管道无损检测技术[J]. 无损检测, 2006, 28(3): 137-150.

【2】Zuo Y T, Yu H D. Methods of NDT technique for buried pipelines[J]. Chemical Equipment Technology, 2010, 31(6): 53-56.
左延田, 俞厚德. 在用埋地钢质管道管体无损检测技术[J]. 化工装备技术, 2010, 31(6): 53-56.

【3】Zhang Y Q, Zhang Z X,Hao J C, et al. Development of ultrasonic guided wave technique used in pipeline inspection[J]. Process Equipment & Piping, 2016(3): 72-75.
张跃强, 张早校, 郝建成, 等. 管道超声导波检测技术进展[J]. 化工设备与管道, 2016(3): 72-75.

【4】Lu H F, Wu X N, Tom I, et al. The status quo of natural gas line pipe inspection technologies abroad and its implications for China[J]. Natural Gas Industry, 2018, 38(2): 103-111.
卢泓方, 吴晓南, Tom I, 等. 国外天然气管道检测技术现状及启示[J]. 天然气工业, 2018, 38(2): 103-111.

【5】Dai J M, Wang Z J. Infrared thermography non-destructive testing technology and its applications[J]. Techniques of Automation and Applications, 2007, 26(1): 1-7.
戴景民, 汪子君. 红外热成像无损检测技术及其应用现状[J]. 自动化技术与应用, 2007, 26(1): 1-7.

【6】Lahiri B B, Bagavathiappan S, Soumya C, et al. Infrared thermography based defect detection in ferromagnetic specimens using a low frequency alternating magnetic field[J]. Infrared Physics & Technology, 2014, 64: 125-133.

【7】Endo H, Kusaka T. Efficient inspection for gas pipes by infrared thermography[J]. Technology Review, 2015, 33(2): 50-55.

【8】Wang Y M, Guo X W, Li R H. Measuring defect diameter and depth in infrared testing[J]. Laser & Infrared, 2002, 32(6): 404-406.
王永茂, 郭兴旺, 李日华. 红外检测中缺陷大小和深度的测量[J]. 激光与红外, 2002, 32(6): 404-406.

【9】Wang Y M, Guo X W, Li R H, et al. Defect dimension and depth measurement by infrared thermography[J]. Nondestructive Testing, 2003, 25(9): 458-461.
王永茂, 郭兴旺, 李日华, 等. 缺陷大小和深度的红外检测[J]. 无损检测, 2003, 25(9): 458-461.

【10】Yang L J, Geng W Z, Jiang L Z, et al. Evaluation of defect size in infrared imaging testing[J]. Nondestructive Testing, 1999, 21(2): 65-67.
杨黎俊, 耿完桢, 姜铃珍, 等. 红外成象检测中的缺陷大小评估[J]. 无损检测, 1999, 21(2): 65-67.

【11】Zhu Y K, Zhu Z B, Zheng R B, et al. Thermal excitation method in infrared thermography nondestructive testing[J]. Petro-Chemical Equipment, 2014, 43(4): 86-89.
朱亚昆, 朱志彬, 郑荣部, 等. 红外热像无损检测的热激励技术[J]. 石油化工设备, 2014, 43(4): 86-89.

【12】Tian Y P, Zhou K Y, Liang H, et al. Research on quantitative evaluation of infrared thermography[J]. Chinese Journal of Scientific Instrument, 2008, 29(11): 2413-1418.
田裕鹏, 周克印, 梁华, 等. 缺陷红外检测的定量化分析研究[J]. 仪器仪表学报, 2008, 29(11): 2413-1418.

【13】Zhao S B, Zhang C L, Wu N M, et al. Infrared thermal wave non-destructive inspection for defects of polypropylene pipeline[J]. Acta Optica Sinica, 2010, 30(2): 456-460.
赵石彬, 张存林, 伍耐明, 等. 红外热波无损检测技术用于聚丙烯管道缺陷的检测[J]. 光学学报, 2010, 30(2): 456-460.

【14】Zhang X W, Ding Y Q, Yan P. Vision inspection of metal surface defects based on infrared imaging[J]. Acta Optica Sinica, 2011, 31(3): 0312004.
张学武, 丁燕琼, 闫萍. 一种基于红外成像的强反射金属表面缺陷视觉检测方法[J]. 光学学报, 2011, 31(3): 0312004.

【15】Rohsenow W M. Handbook of heat transfer fundamentals [M]. Beijing: Science Press, 1992.
罗森诺. 传热学基础手册[M]. 北京: 科学出版社, 1992.

【16】Hua H R. Research on quantitative detection of defect depth through reflection method and transmission method of infrared thermal imaging technology[D]. Nanchang: Nanchang Hangkong University, 2015.
华浩然. 红外热成像反射与透射法的缺陷深度定量检测[D]. 南昌: 南昌航空大学, 2015.

【17】Liu Z T, Pan J, Yin X, et al. Effects of induction heating coil parameters on temperature field of tested subjects[J]. Journal of Mechanical & Electrical Engineering, 2015, 32(3): 317-323.
刘震涛, 潘俊, 尹旭, 等. 感应加热线圈参数对被试件温度场的影响分析[J]. 机电工程, 2015, 32(3): 317-323.

引用该论文

Wang Zhuo,Zhang Yunwei,Yu Yong,Fan Yangyang. Depth Test of Pipeline Defects by Active Thermal Excitation and Infrared Thermography[J]. Acta Optica Sinica, 2018, 38(9): 0912003

王卓,张云伟,喻勇,樊阳阳. 主动热激励式红外热成像管道缺陷深度检测[J]. 光学学报, 2018, 38(9): 0912003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF