首页 > 论文 > 光学学报 > 38卷 > 9期(pp:922001--1)

基于异质结构的一维光子晶体红外3~5 μm高反射镜设计

High Reflector Designed with One-Dimensional Photonic Crystal in 3-5 μm Infrared Region Based on Hetero-Structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了具有异质结构且适用于3~5 μm红外光区的一维光子晶体高反射镜,系统地分析了光波在一维周期性光子晶体中的反射特性,通过传输矩阵计算和仿真验证了λ/4介质膜系的反射率和最佳禁带宽度。在此基础上,选取Si和Y2O3两种材料,构造了24层一维光子晶体的双异质结构,仿真结果表明:在3~5 μm红外波段,该结构的反射率为97.418%~99.999%。为了减少膜层数量,以金属银为衬底,设计了以Si和Y2O3为介质层结构的一维金属增强型光子晶体,其总层数为9层,仿真结果表明:在3~5 μm红外波段,其反射率为98.943%~99.979%。

Abstract

In this paper, a high reflector based on one-dimensional photonic crystal of hetero-structure in infrared region(3-5 μm) is investigated. The reflection characteristics of light wave in one-dimensional periodic photonic crystals are systematically analyzed. The reflectivity and the optimal forbidden band width of the λ/4 dielectric film system are verified by transfer matrix theory calculation and simulation. On this basis, Si and Y2O3 are selected to construct the one-dimensional photonic crystal of double hetero-structure with 24 layers. The simulation result shows that the reflectivity in infrared region (3-5 μm) is between 97.418% and 99.999%. In order to reduce the number of the film layers, using metal silver as an substrate, we design the dielectric layer structure of Si and Y2O3 with 9 layers of one-dimensional metal enhanced photonic crystal. The simulation result shows that the reflectivity is between 98.943% and 99.979% in the infrared band of 3-5 μm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN213

DOI:10.3788/aos201838.0922001

所属栏目:光学设计与制造

基金项目:国家自然科学基金(51774218)

收稿日期:2018-03-23

修改稿日期:2018-04-13

网络出版日期:2018-04-16

作者单位    点击查看

李康文:武汉科技大学省部共建耐火材料与冶金国家重点实验室, 湖北 武汉430081
李享成:武汉科技大学省部共建耐火材料与冶金国家重点实验室, 湖北 武汉430081
陈平安:武汉科技大学省部共建耐火材料与冶金国家重点实验室, 湖北 武汉430081
程用志:武汉科技大学信息科学与工程学院, 湖北 武汉 430081
朱伯铨:武汉科技大学省部共建耐火材料与冶金国家重点实验室, 湖北 武汉430081

联系人作者:李享成(lixiangcheng@wust.edu.cn); 李康文(749875749@qq.com);

【1】Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062.

【2】John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.

【3】Lee H Y, Yao T. Design and evaluation of omnidirectional one-dimensional photonic crystals[J]. Journal of Applied Physics, 2003, 93(2): 819-830.

【4】Zhang W G, Xu G Y, Zhang J C, et al. Infrared spectrally selective low emissivity from Ge/ZnS one-dimensional heterostructure photonic crystal[J]. Optical Materials, 2014, 37: 343-346.

【5】Dai J P, Gao W, Liu B, et al. Design and fabrication of UV band-pass filters based on SiO2/Si3N4 dielectric distributed Bragg reflectors[J]. Applied Surface Science, 2016, 364: 886-891.

【6】Wang Q C, Wang J C, Zhao D P, et al. Investigation of terahertz waves propagating through far infrared/CO2 laser stealth-compatible coating based on one-dimensional photonic crystal[J]. Infrared Physics & Technology, 2016, 79: 144-150.

【7】Zhang J K, Zhao D P, Wang J C, et al. Thermal infrared pattern painting based on photonic crystals[J]. Acta Optica Sinica, 2016, 36(12): 1216001.
张继魁, 赵大鹏, 汪家春, 等. 基于光子晶体的热红外迷彩[J]. 光学学报, 2016, 36(12): 1216001.

【8】Zhao X K, Zhao Q W, Wang L F. Laser and infrared compatible stealth from near to far infrared bands by doped photonic crystal[J]. Procedia Engineering, 2011, 15: 1668-1672.

【9】Wang Z X, Cheng Y Z, Nie Y, et al. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications[J]. Journal of Applied Physics, 2014, 116(5): 054905.

【10】Qi D, Wang X, Cheng Y Z, et al. Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications[J]. Optical Materials, 2016, 62: 52-56.

【11】Li H Q, Chen H, Qiu X J. Band-gap extension of disordered 1D binary photonic crystals[J]. Physica B, 2000, 279(1/2/3): 164-167.

【12】Wang X, Hu X H, Li Y Z, et al. Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures[J]. Applied Physics Letters, 2002, 80(23): 4291-4293.

【13】Lepeshkin N N, Schweinsberg A, Piredda G, et al. Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals[J]. Physical Review Letters, 2004, 93(12): 123902.

【14】Shiveshwari L, Mahto P. Photonic band gap effect in one-dimensional plasma dielectric photonic crystals[J]. Solid State Communications, 2006, 138(3): 160-164.

【15】Wu C J, Chung Y H, Syu B J, et al. Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal[J]. Progress in Electromagnetics Research, 2010, 102: 81-93.

【16】Kong X K, Liu S B, Zhang H F, et al. Omnidirectional photonic band gap of one-dimensional ternary plasma photonic crystals[J]. Journal of Optics, 2011, 13(3): 035101.

【17】Hung H C, Wu C J, Yang T J, et al. Enhancement of near-infrared photonic band gap in a doped semiconductor photonic crystal[J]. Progress In Electromagnetics Research, 2012, 125: 219-235.

【18】Zhang H F, Liu S B, Kong X K, et al. Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer[J]. Physics of Plasmas, 2012, 19(2): 022103.

【19】Alejo-Molina A, Romero-Antequera D L, Sánchez-Mondragón J J. Localization and characterization of the metallic band gaps in a ternary metallo-dielectric photonic crystal[J]. Optics Communications, 2014, 312: 168-174.

【20】Jamshidi-Ghaleh K, Ebrahimpour Z, Moslemi F. Amplifying and compressing optical filter based on one-dimensional ternary photonic crystal structure containing gain medium[J]. Physica B, 2015, 468: 72-75.

【21】Cheng Y Z, Gong R Z, Cheng Z Z. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves[J]. Optics Communications, 2016, 361: 41-46.

【22】Ma R K, Wang J J, Fang Y T. Transfer matrix method of one-dimensional photonic crystal composed of gyromagnetic materials[J]. Laser & Optoelectronics Progress, 2016, 53(1): 011601.
马荣坤, 王纪俊, 方云团. 基于旋磁材料一维光子晶体传输矩阵算法[J]. 激光与光电子学进展, 2016, 53(1): 011601.

【23】Yeganegi E, Lagendijk A, Mosk A P, et al. Local density of optical states in the band gap of a finite one-dimensional photonic crystal[J]. Physical Review B, 2013, 89(4): 045123.

【24】Yariv A, Yeh P. Photonics: optical electronic in modern communications[M]. Oxford: Oxford University Press, 2006: 539-555.

【25】Tang J F, Gu P F, Liu X, et al. Modern optical thin film technology[M]. Hangzhou: Zhejiang University Press, 2006: 539-555.
唐晋发, 顾培夫, 刘旭, 等. 现代光学薄膜技术[M]. 杭州: 浙江大学出版社, 2006: 539-555.

【26】Yu H Z. Infrared optical material[M]. Beijing: National Defense Industry Press, 2015: 13-17.
余怀之. 红外光学材料[M]. 北京: 国防工业出版社, 2015: 13-17.

【27】Wang F, Cheng Y Z, Wang X, et al. Effective modulation of the photonic band gap based on Ge/ZnS one-dimensional photonic crystal at the infrared band[J]. Optical Materials, 2018, 75: 373-378.

引用该论文

Li Kangwen,Li Xiangcheng,Chen Ping′an,Cheng Yongzhi,Zhu Boquan. High Reflector Designed with One-Dimensional Photonic Crystal in 3-5 μm Infrared Region Based on Hetero-Structure[J]. Acta Optica Sinica, 2018, 38(9): 0922001

李康文,李享成,陈平安,程用志,朱伯铨. 基于异质结构的一维光子晶体红外3~5 μm高反射镜设计[J]. 光学学报, 2018, 38(9): 0922001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF