首页 > 论文 > 光学 精密工程 > 26卷 > 7期(pp:1612-1620)

大口径自适应镜面微位移测量系统设计

Design of micro-displacement measurement system for large aperture adaptive mirror

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对大口径自适应副镜镜面变形量小、变化频率高、微变形难以精确测量的难题, 设计一种基于电容检测芯片Pcap01-AD和STM32F103的镜面变形检测系统。首先, 根据音圈电机驱动的变形镜的特点提出基于电容位移传感的变形镜微变形测量方案。然后, 进行该测量系统的硬件和软件设计, 其中硬件部分由电容检测芯片Pcap01接口电路、单片机STM31F103最小系统和供电部分构成, 软件部分包括实现电容数字信号采集的C程序设计、Pcap01-AD与单片机的通讯程序和数据处理程序。最后, 设计实验平台进行多次试验。试验测试结果表明, 在变形镜±50 μm的位移区间内, 测量灵敏度为200 pF/3 μm, 10 nm的位移量对应的电容变化为0.067 pF。该系统测量精度高、误差小、检测效率高, 能够用于自适应镜面的变形检测, 同时也适用于其他微小位移的检测。

Abstract

A mirror deformation detection system based on STM32 and using the capacitance detection chip Pcap01-AD was designed to solve the problems of small deformation, high change frequency, and difficulty of accurately measuring the microdeformation that were associated with a large aperture adaptive sub-mirror. First, according to the characteristics of the deformable mirror, which was driven by the voice coil motor, a system scheme for measuring the microdeformation of the mirror using the capacitance displacement sensor was proposed. Then, the hardware and software are designed for the measurement system. The hardware was constructed with the microcapacitance detection chip Pcap01, STM32F103 microcontroller (MCU) system, and power supply circuit. The software part included programming the lower computer in C language to realize digital signal acquisition of the capacitance, communication between the Pcap01-AD and MCU, data conversion of the upper computer and data processing, real-time display, and data storage. According to the structural characteristics of the large aperture telescope sub-mirror system, the experimental platform was designed to enable the conduction of several tests. The test results show that in the range of 50 μm, the measurement sensitivity is 200 pF/3 μm, and the system has high accuracy, small error, and high detection efficiency. Thus, this system can be used in adaptive mirror surface deformation detection and other small-displacement measurements.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TH743;TP212

DOI:10.3788/ope.20182607.1612

所属栏目:现代应用光学

基金项目:国家自然科学基金资助项目(No.11303066)

收稿日期:2017-12-15

修改稿日期:2018-02-10

网络出版日期:--

作者单位    点击查看

左 恒:中国科学院 国家天文台南京天文光学技术研究所, 江苏 南京 210042中国科学院 天文光学技术重点实验室, 江苏 南京 210042
刘志民:中国科学院 国家天文台南京天文光学技术研究所, 江苏 南京 210042中国科学院 天文光学技术重点实验室, 江苏 南京 210042中国科学院大学, 北京 100049

联系人作者:左恒(hengz@niaot.ac.cn)

备注:左 恒(1982-), 男, 湖北天门人, 副研究员, 2004年于中国科学技术大学获得学士学位, 2010年于中国科学院南京天文光学技术研究所获得博士学位, 主要从事大口径自适应变形镜的研究。

【1】TYSON R K. Introduction to Adaptive Optics[M]. Bellingham: SPIE Press, 2000.

【2】王玉坤, 胡立发, 王冲冲, 等.液晶自适应光学系统中倾斜镜的建模与控制[J].光学 精密工程, 2016, 24(4): 771-779.
WANG Y K, HU L F, WANG CH CH, et al.. Modeling and control of tip/tilt mirror in liquid crystal adaptive optical system[J]. Opt. Precision Eng., 2016, 24(4): 771-779.(in Chinese)

【3】丁科, 黄永梅, 马佳光, 等.抑制光束抖动的快速反射镜复合控制[J].光学 精密工程, 2011, 19 (9): 1991-1998.
DING K, HUANG Y M, MA J G, et al.. Composite control of fast-steering-mirror for beam jitter[J].Opt. Precision Eng., 2011, 19(9): 1991-1998. (in Chinese)

【4】马佳光, 唐涛.复合轴精密跟踪技术的应用与发展[J].红外与激光工程, 2013, 42(1): 218-227.
MA J, TANG T. Review of compound axis servomechanism tracking control technology[J]. Infrared and Laser Engineering, 2013, 42(1): 218-227. (in Chinese)

【5】徐新行, 刘廷霞, 时魁, 等.提高万向轴系式快速反射镜指向精度的装置[J].光学 精密工程, 2015, 23(6): 1688-1694.
XU X H, L T X, SHI K, et al.. Device for improving pointing precision of fast steering mirror with spherical gemel[J]. Opt. Precision Eng., 2015, 23(6): 1688-1694. (in Chinese)

【6】李贤涛, 张晓沛, 毛大鹏, 等. 高精度音圈快速反射镜的自适应鲁棒控制[J]. 光学 精密工程, 2017, 25(9): 2428-2436.
LI X T, ZHANG X P, MAO D P, et al.. Adaptive robust control over high-performance VCM-FSM[J]. Opt. Precision Eng., 2017, 25(9): 2428-2436. (in Chinese)

【7】王帅, 曹玉岩.音圈电机型快速反射镜的驱动控制系统设[J].电子测量与仪器学报, 2017, 31(7): 1115-1121.
WANG SH, CAO Y Y. Design of control system for fast steering mirror driven by voice coil actuator[J].Journal of Electronic Measurement and Instrument, 2017, 31(7): 1115-1121.(in Chinese)

【8】贾建禄, 赵金宇, 王建立, 等. 基于FPGA的自适应光学波前处理算法[J]. 光学 精密工程, 2017, 25(10): 2580-2583.
JIA J L, ZHAO J Y, WANG J L, et al.. Adaptive optical wave-front processing algorithm based on FPGA[J]. Opt. Precision Eng., 2017, 25(10): 2580-2583. (in Chinese)

【9】李晓辉.基于电容法的微位移测量技术研究[D].大连: 大连海事大学, 2015.
LI X H. Research of Micro Displacement Measurement Technology Based on Capacitance Method[D].Dalian: Dalian Maritime University, 2015.(in Chinese)

【10】郑银涛.基于平板式电容的微位移测量系统设计[D].大连: 大连理工大学, 2010.
ZHENG Y T. Design of Parallel-Plate Capacitor Based Mirco-Displacement Detecting System[D].Dalian: Dalian University of Technology, 2010.(in Chinese)

【11】冯佳. 极微小电容的检测技术[D].北京: 中国科学院大学, 2014.
FENG J.Research on the Detecting Technology of Tiny Capacitance[D]. BeiJing: University of Chinese Academy of Sciences, 2014.(in Chinese)

【12】张宇鹏, 徐钰蕾, 王昱棠.高精度电容式角位移传感器测量方法[J].仪器仪表学报, 2014, 35(S1): 147-150.
ZHANG Y P, XU Y L, WANG Y T.Measurement method of high-precision capacitive angular displacement sensor[J].Chinese Journal of Scientific Instrument, 2014, 35(S1): 147-150. (in Chinese)

【13】朱宵波, 苑伟政, 任森.一种电容式传感器数字化通用检测接口设计[J].国外电子测量技术, 2013, 32(1): 62-65.
ZHU X B, YUAN W ZH, REN S. Universal digital detection interface for capacitive sensors[J].Foreign Electronic Measurement Technology, 2013, 32(1): 62-65. (in Chinese)

【14】AMARASINGHE R., DAO D V, TORIYAM T. Development of miniaturized 6-axis accelerometer utilizing piezoresistive sensing elements[J].Sensors and Actuators, 2007(134): 310-320.

【15】ZHANG D F, DRISSEN W, BREGUET J M, et al.. A high-sensitivity and quasi-linear capacitive sensor for nano-mechanical testing applications[J].Journal of Micromechanics and Microengineering, 2009, 19(7): 075003.

引用该论文

ZUO Heng,LIU Zhi-min. Design of micro-displacement measurement system for large aperture adaptive mirror[J]. Optics and Precision Engineering, 2018, 26(7): 1612-1620

左 恒,刘志民. 大口径自适应镜面微位移测量系统设计[J]. 光学 精密工程, 2018, 26(7): 1612-1620

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF