首页 > 论文 > 量子电子学报 > 35卷 > 5期(pp:550-557)

基于量子密钥分配的相关延迟移位键控混沌通信

Correlation delay shift keying chaotic communication based on quantum key distribution

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对相关延迟移位键控混沌通信系统中相邻比特之间相互干扰导致误码率高的缺点,提出了一种基于量子密钥分配协议的Hadamard码相关延迟移位键控混沌通信方案。 在系统发射端,参考信号是经Hadamard函数扩频的混沌信号,发送信号是参考信号、延迟信号和数据调制信号的和信号,系统延迟时间由量子协议分布确定。 仿真结果表明,由于Hadamard函数的正交性,该系统可以很好地消除相邻位之间的相互干扰,并保持原有相关延迟移位键控的优点如混沌通信方案,降低系统误码率等。 此外,该系统具有高安全性的量子密钥分配协议。

Abstract

For the shortcomings of correlation delay shift keying chaotic communication system, mutual interference between the adjacent bits leads to high bit error rate, a Hadamard code correlation delay shift keying chaotic communication scheme based on quantum key distribution protocol is proposed. In the system transmitter, the chaotic signal through Hadamard function for spreading spectrum is used as reference signal, and the sent signal is a sum of the reference signal, delay signal and data modulation signal, and the system delay time is determined by quantum protocol distribution. Simulation results show that because of the orthogonally of Hadamard function, the proposed system can well eliminate the mutual interference between adjacent bits and keep the advantages of original correlation delay shift keying, such as chaotic communication scheme, reducing system bit error rate. Moreover, the proposed system has quantum key distribution protocol with high security.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O431.2

DOI:10.3969/j.issn.1007-5461.2018.05.007

所属栏目:量子光学

基金项目:Supported by Base and Cutting-Edge Technology Research Project of Henan Province(河南省基础与前沿技术研究项目, 152300410103), Key Project of Science and Technology of Henan Provincial Education Department(河南省教育厅科技攻关重点项目, 13A510330)

收稿日期:2017-05-15

修改稿日期:2017-06-12

网络出版日期:--

作者单位    点击查看

李辉:河南理工大学物理与电子信息学院, 河南 焦作 454000
王英杰:河南理工大学电气工程与自动化学院, 河南 焦作 454000

联系人作者:李辉(li20042007@163.com)

备注:李辉(1976-),河南新乡人,博士,教授,主要研究方向为混沌通信,多址通信,量子理论。E-mail: li20042007@163.com

【1】Turk M, Ogras H. Classification of chaos-based digital modulation techniques using wavelet neural networks and performance comparison of wavelet families[J]. Expert Systems with Applications, 2011, 38(3): 2557-2565.

【2】Kaddoum G, Richardson F D, Gagnon F. Design and analysis of a multi-carrier differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2013, 61(8): 3281-3291.

【3】Yang H, Jiang G P, Duan J Y. Novel frequency-modulated differential chaos shift keying modulation scheme based on phase separation[J]. Journal of Applied Analysis and Computation, 2015, 5(2): 189-196.

【4】Duan J Y, Jiang G P, Yang H. Reference-adaptive CDSK: An enhanced version of correlation delay shift keying[J]. IEEE Transactions on Circuits and Systems II Express Briefs, 2015 , 62(1): 90-94.

【5】Quyen N X. On the performance of low-rate wireless correlation-delay-shift-keying system[J]. AEU-International Journal of Electronics and Communications, 2017, 71: 37-44.

【6】Ding Q, Wang J N. Design of frequency-modulated correlation delay shift keying chaotic communication system[J]. IET Communications, 2011, 5(7): 901-905.

【7】Mohammad N, Maté B P. Hadamard coded modulation: An alternative to OFDM for wireless optical communications[C]. IEEE Global Communications Conference, 2014: 2102-2107.

【8】Suchitra G, Valarmathi M L. BER performance of walsh-hadamard like kronecker product codes in a DS-CDMA and cognitive underlay system[J]. Wireless Personal Communications, 2013, 71(3): 2023-2043.

【9】Woodhead E, Pironio S. Effects of preparation and measurement misalignments on the security of the BB84 quantum key distribution protocol[J]. Physical Review A, 2013, 87(87): 34-44.

【10】Huang W, Wen Q Y. Quantum key agreement with EPR pairs and single-particle measurements[J]. Quantum Information Processing, 2014, 13(3): 649-663.

【11】Yang G, Sun S J. Flexible protocol for quantum private query based on B92 protocol[J]. Quantum Information Processing, 2014, 13(3): 805-813.

【12】Kim C M, Kim Y W, Park Y J. Attack with Hong-Ou-Mandel interferometer to quantum key distribution[J]. Current Applied Physics, 2011, 11(4): 1006-1009.

【13】Bouzid A, Park J B, Kim S M. Characterization of a single-photon detector at 1.55 μm operated with an active hold-off technique for quantum key distribution[J]. Current Applied Physics, 2011, 11(3): 903-908.

【14】Chiu C Y, Lambert N. No-cloning of quantum steering[J]. Studies in History and Philosophy of Science Part B, 2016, 44(4): 379-394.

【15】Lee J H , An C. Analysis of boss map according to delay time in CDSK system and proposed chaos system[C]. IEEE International Conference on Consumer Electronics, 2015: 521-524.

引用该论文

LI Hui,WANG Yingjie. Correlation delay shift keying chaotic communication based on quantum key distribution[J]. Chinese Journal of Quantum Electronics, 2018, 35(5): 550-557

李辉,王英杰. 基于量子密钥分配的相关延迟移位键控混沌通信[J]. 量子电子学报, 2018, 35(5): 550-557

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF