首页 > 论文 > 光学学报 > 38卷 > 10期(pp:1015001--1)

基于方向可靠性的互补跟踪算法

Complementary Object Tracking Based on Directional Reliability

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于相关滤波的目标跟踪已成为当前的研究热点。传统相关滤波框架中经循环位移训练的跟踪模板对目标的像素排列较为敏感,难以适应目标形变,但其对光照变化和相似颜色干扰等颜色变化稳健性较好;基于空间可靠性的跟踪模板建立空间置信图作为相关滤波的随机场约束项,以适应形变问题,但其对颜色变化稳健性较差。为了充分发挥两种跟踪模板的优势,提出方向可靠性的概念,并制定了一套最优的判别方法,实现了两个模板在x轴和y轴两个方向的最优位移估计。实验结果表明,与当前优秀算法在OTB2013和OTB2015标准测试集上的对比实验验证了本文算法的有效性并能实时跟踪,且具有良好的准确性和稳健性。

Abstract

Object tracking based on correlation filter has become a research hotspot currently. The traditional tracking model trained from circular correlation is sensitive to the pixel arrangement of the target and is difficult to adapt object deformation, but it has good robustness of variety in color of illumination and similar color interference. However, the model based on spatial reliability can adapt to the deformation by establishing the spatial confidence map as the random field constraint of the correlation filter, but it has less robustness for the color change. In order to exert the superiorities of the two tracking methods, the concept of directional reliability is innovative presented and a set of the optimization strategies is proposed to achieve optimal translation estimation of the two tracking models in both the x-axis and y-axis. Comparative results on OTB2013 and OTB2015 show that the method performs favorable against the other state-of-the-art algorithms and can achieve real-time tracking. It has good accuracy and robustness.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3788/aos201838.1015001

所属栏目:机器视觉

基金项目:国家自然科学基金(11176018,61881330160)、成都市科技惠民技术研发项目(2015-HM01-00293-SF)、成都市产业集群协同创新项目(2016-XT00-00015-GX)

收稿日期:2018-03-21

修改稿日期:2018-04-16

网络出版日期:2018-05-02

作者单位    点击查看

宋日成:四川大学电子信息学院, 四川 成都 610025
何小海:四川大学电子信息学院, 四川 成都 610025
王正勇:四川大学电子信息学院, 四川 成都 610025

联系人作者:何小海(hxh@scu.edu.cn)

【1】Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 2544-2550.

【2】Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]∥European Conference on Computer Vision, 2012: 702-715.

【3】Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.

【4】Li Y, Zhu J K. A scale adaptive kernel correlation filter tracker with feature integration[C]∥European Conference on Computer Vision, 2014: 254-265.

【5】Danelljan M, Hger G, Khan F S, et al. Accurate scale estimation for robust visual tracking[C]∥British Machine Vision Conference, 2014.

【6】Danelljan M, Hger G, Khan F S, et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1561-1575.

【7】Galoogahi H K, Sim T, Lucey S. Correlation filters with limited boundaries[C]∥IEEE Conference on Computer Vision and Pattern Recognition, 2015: 4630-4638.

【8】Possegger H, Mauthner T, Bischof H. In defense of color-based model-free tracking[C]∥IEEE Conference on Computer Vision and Pattern Recognition, 2015: 2113-2120.

【9】Danelljan M, Hger G, Khan F S, et al. Learning spatially regularized correlation filters for visual tracking[C]∥IEEE International Conference on Computer Vision, 2015: 4310-4318.

【10】Lukeic A, Vojír T, Zajc L C, et al. Discriminative correlation filter with channel and spatial reliability[C]∥IEEE Conference on Computer Vision and Pattern Recognition, 2017, 4847-4856.

【11】Bertinetto L, Valmadre J, Golodetz S, et al. Staple: Complementary learners for real-time tracking[C]∥IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1401-1409.

【12】Zhao G P, Shen Y P, Wang J N. Adaptive feature fusion object tracking based on circulant structure with kernel[J]. Acta Optica Sinica, 2017, 37(8): 0815001.
赵高鹏, 沈玉鹏, 王建宇. 基于核循环结构的自适应特征融合目标跟踪[J]. 光学学报, 2017, 37(8): 0815001.

【13】Wang M M, Liu Y, Huang Z Y. Large margin object tracking with circulant feature maps[C]∥IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4800-4808.

【14】Hare S, Golodetz S, Saffari A, et al. Struck: structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096-2109.

【15】He S F, Yang Q X, Lau R W H, et al. Visual tracking via locality sensitive histograms[C]∥IEEE Conference on Computer Vision and Pattern Recognition, 2013: 2427-2434.

【16】Jia X, Lu H C, Yang M H. Visual tracking via adaptive structural local sparse appearance model[C]∥IEEE Conference on Computer Vision and Pattern Recognition, 2012: 1822-1829.

【17】Yang F, Lu H C, Yang M H. Robust superpixel tracking[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1639-1651.

【18】Danelljan M, Hger G, Khan F S, et al. Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking[C]∥IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1430-1438.

【19】Jin Z F F, Hou Z Q, Yu W S, et al. Multiple feature fusion based on covariance matrix for visual tracking[J]. Acta Optica Sinica, 2017, 37(9): 0915005.
金泽芬芬, 侯志强, 余旺盛, 等. 基于协方差矩阵的多特征融合跟踪算法[J]. 光学学报, 2017, 37(9): 0915005.

【20】Yang F C, Yang D D, Mao N, et al. Robust infrared target tracking based on histograms of sparse coding[J]. Acta Optica Sinica, 2017, 37(11): 1115002.
杨福才, 杨德东, 毛宁, 等. 基于稀疏编码直方图的稳健红外目标跟踪[J]. 光学学报, 2017, 37(11): 1115002.

【21】Wu Y, Lim J, Yang M H. Online object tracking: a benchmark[C]∥IEEE Conference on Computer Vision and Pattern Recognition, 2013: 2411-2418.

【22】Wu Y, Lim J, Yang M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848.

【23】Kristan M, Matas J, Leonardis A, et al. The visual object tracking VOT2015 challenge results[C]∥IEEE International Conference on Computer Vision Workshop, 2016: 564-586.

【24】Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122.

引用该论文

Song Richeng,He Xiaohai,Wang Zhengyong. Complementary Object Tracking Based on Directional Reliability[J]. Acta Optica Sinica, 2018, 38(10): 1015001

宋日成,何小海,王正勇. 基于方向可靠性的互补跟踪算法[J]. 光学学报, 2018, 38(10): 1015001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF