首页 > 论文 > 光学学报 > 38卷 > 10期(pp:1014002--1)

激光冲击强化H62黄铜摩擦磨损性能研究

Friction and Wear Properties of H62 Brass Subjected to Laser Shock Peening

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用高能激光束对H62黄铜进行单层和三层激光冲击强化(LSP),研究激光冲击前后微观组织、截面显微硬度以及表面粗糙度的变化,发现激光冲击明显细化了H62黄铜的晶粒,形成纳米结构层,并增加了其显微硬度和表面粗糙度,且显微硬度和表面粗糙度随冲击层数的增加而增大。利用UMT-2摩擦磨损实验机分别对原始试样、LSP试样进行摩擦磨损实验,分析了三种试样的摩擦系数、磨损率和磨痕形貌差异,发现在相同的摩擦条件下,LSP试样的摩擦系数和磨损率均比原始试样小,且随着冲击层数从单层增加到三层,摩擦系数和磨损量变得更小,表明LSP能够提高H62黄铜的耐磨性,多层LSP对H62黄铜耐磨性的提升效果更佳。激光冲击后,试样的磨损机制由以剥层磨损为主转变为以磨粒磨损为主。

Abstract

H62 brass is subjected to laser shock peening (LSP) with one coverage layer and three coverage layers by high-energy laser beam. Varieties of micro-structure, micro-hardness, and surface roughness before and after LSP are investigated. It is found that the grain size of H62 brass is obviously refined with LSP, and a nanostructure layer is obtained. The micro-hardness and surface roughness of H62 brass increase with the increase of number of LSP coverage layers. The friction and wear test of the as-received sample and LSPed samples (samples subjected to LSP) is carried out by UMT-2 friction and wear test machine. The differences of friction coefficient, wear rate, and wear scar morphology in these samples are analyzed. It is found that under the same friction condition, the friction coefficient and wear rate of LSPed samples are smaller than the as-received sample, which become much smaller with the LSP coverage layers increasing from one to three. It is indicated that LSP can improve the wear resistance of H62 brass, and multi-layer LSP has a better effect on the improvement of the wear resistance of H62 brass. After LSP, the wear mechanism is changed from domination with delamination wear to abrasive wear.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/aos201838.1014002

所属栏目:激光器与激光光学

基金项目:国家自然科学基金(51575242, 51775250)、江苏省科技计划(BE2016148, BE2017142)

收稿日期:2018-03-30

修改稿日期:2018-05-07

网络出版日期:2018-05-15

作者单位    点击查看

段海峰:江苏大学机械工程学院, 江苏 镇江 212013
罗开玉:江苏大学机械工程学院, 江苏 镇江 212013
鲁金忠:江苏大学机械工程学院, 江苏 镇江 212013

联系人作者:鲁金忠(jzlu@ujs.edu.cn); 段海峰(duanhaif@163.com);

【1】Qu X B, Chen J M, Zhou H D, et al. Current state and development trend of the research on material wear failure and failure prevention[J]. Tribology, 1999, 19(2): 187-192.
屈晓斌, 陈建敏, 周惠娣, 等. 材料的磨损失效及其预防研究现状与发展趋势[J]. 摩擦学学报, 1999, 19(2): 187-192.

【2】Yang S T, Xing Y M, Lang F C, et al. Friction and wear properties of 316L stainless steel after shot peening[J]. Heat Treatment of Metals, 2016, 41(11): 35-39.
杨诗婷, 邢永明, 郎风超, 等. 喷丸强化316L不锈钢表面的摩擦磨损性能[J]. 金属热处理, 2016, 41(11): 35-39.

【3】Hu T, Wen C S, Sun G Y, et al. Wear resistance of NiTi alloy after surface mechanical attrition treatment[J]. Surface and Coatings Technology, 2010, 205(2): 506-510.

【4】El Aal M I A, El Mahallawy N, Shehata F A, et al. Wear properties of ECAP-processed ultrafine grained Al-Cu alloys[J]. Materials Science and Engineering: A, 2010, 527(16/17): 3726-3732.

【5】Feng Y Y, Ye Y X, Lian Z C, et al. Experimental research on effect of surface quality of copper treated by laser shock peening[J]. Laser & Optoelectronics Progress, 2015, 52(10): 101401.
冯亚云, 叶云霞, 连祖焻, 等. 激光冲击强化对铜表面质量影响的实验研究[J]. 激光与光电子学进展, 2015, 52(10): 101401.

【6】Nie X F, He W F, Zang S L, et al. Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts[J]. Surface and Coatings Technology, 2014, 253: 68-75.

【7】Lu J Z, Qi H, Luo K Y, et al. Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies[J]. Corrosion Science, 2014, 80: 53-59.

【8】Sánchez-Santana U, Rubio-González C, Gomez-Rosas G, et al. Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing[J]. Wear, 2006, 260(7/8): 847-854.

【9】Lu J Z, Luo K Y, Dai F Z, et al. Effects of multiple laser shock processing (LSP) impacts on mechanical properties and wear behaviors of AISI 8620 steel[J]. Materials Science and Engineering: A, 2012, 536: 57-63.

【10】He H J, Zhang L F, Yang G M, et al. Friction andwear properties of AZ31 magnesium alloy by laser shock processing[J]. Chinese Journal of Lasers, 2015, 42(9): 0906003.
何换菊, 张凌峰, 杨根妹, 等. 激光冲击强化AZ31镁合金摩擦磨损性能的研究[J]. 中国激光, 2015, 42(9): 0906003.

【11】Zhong J W, Lu J Z, Luo K Y, et al. Tribological behaviors of laser shock processing AISI 8620 steel[J]. Chinese Journal of Lasers, 2012, 39(1): 0103001.
钟俊伟, 鲁金忠, 罗开玉, 等. AISI 8620合金钢激光冲击强化层摩擦学特性[J]. 中国激光, 2012, 39(1): 0103001.

【12】Zhang X Q, He G D, Wang S Y, et al. Effect of laser shot peening on microstructure and wear resistance of quenched and tempered 40Cr steel[J]. Transactions of Materials and Heat Treatment, 2011, 32(5): 138-142.
张兴权, 何广德, 汪世益, 等. 激光喷丸强化对调质40Cr钢组织及耐磨性的影响[J]. 材料热处理学报, 2011, 32(5): 138-142.

【13】Liu B, Luo K Y, Wu L J, et al. Effect of laser shock processing on property and microstructure of AM50 magnesium alloy[J]. Acta Optica Sinica, 2016, 36(8): 0814003.
刘波, 罗开玉, 吴刘军, 等. 激光冲击强化对AM50镁合金性能和结构的影响[J]. 光学学报, 2016, 36(8): 0814003

【14】Nie X F, He W F, Zhou L C, et al. Experiment investigation of laser shock peening on TC6 titanium alloy to improve high cycle fatigue performance[J]. Materials Science and Engineering: A, 2014, 594: 161-167.

【15】Dai F Z, Lu J Z, Zhang Y K, et al. Effect of initial surface topography on the surface status of LY2 aluminum alloy treated by laser shock processing[J]. Vacuum, 2012, 86(10): 1482-1487.

【16】Pei X, Ren A G, Gu Y Y, et al. Effects of laser shock processing on mechanical properties of AZ91 magnesium alloy[J]. Laser Technology, 2010, 34(4): 552-556.
裴旭, 任爱国, 顾永玉, 等. AZ91镁合金激光冲击强化力学性能研究[J]. 激光技术, 2010, 34(4): 552-556.

【17】Wang C, Hu J C, Xu Y J, et al. Numerical study of repetitive laser shock peening of oxygen-free high-conductivity copper[J]. Laser & Optoelectronics Progress, 2016, 53(9): 091402.
王成, 胡家诚, 许杨剑, 等. 重复多次激光喷丸强化高导无氧铜的数值研究[J]. 激光与光电子学进展, 2016, 53(9): 091402.

【18】Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Materialia, 2002, 50(18): 4603-4616.

【19】Tian F, Yang H. Experimental study on wear behavior of nano-crystallization surface of 40Cr[J]. Surface Technology, 2013, 42(5): 52-54.
田峰, 杨辉. 40Cr钢表面高能喷丸纳米化及其耐磨性能[J]. 表面技术, 2013, 42(5): 52-54.

【20】Zhong J S, Lu J Z, Luo K Y, et al. Influence of laser shock processing on tensile properties and tribological behaviors of AISI 304 stainless steel[J]. Chinese Journal of Lasers, 2013, 40(5): 0503002.
钟金杉, 鲁金忠, 罗开玉, 等. 激光冲击对AISI304不锈钢拉伸性能和摩擦磨损性能的影响[J]. 中国激光, 2013, 40(5): 0503002.

【21】Zhuang Q Q, Zhang P L, Li M C, et al. Microstructures and wear resistance properties of Ni-Ti-Si coatings on copper alloy surface by laser cladding[J]. Chinese Journal of Lasers, 2017, 44(11): 1102002.
庄乔乔, 张培磊, 李明川, 等. 铜合金表面激光熔覆Ni-Ti-Si涂层微观组织及耐磨性能[J]. 中国激光, 2017, 44(11): 1102002.

【22】Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Materials Science and Engineering: A, 2004, 375/376/377: 38-45.

【23】Wang Z B, Yong X P, Tao N D, et al. The improvement of friction and wear properties of low carbon steel by means of surface nanocrystallization[J]. Acta Metallurgica Sinica, 2001, 37(12): 1251-1255.
王镇波, 雍兴平, 陶乃殚, 等. 表面纳米化对低碳钢摩擦磨损性能的影响[J]. 金属学报, 2001, 37(12): 1251-1255.

引用该论文

Duan Haifeng,Luo Kaiyu,Lu Jinzhong. Friction and Wear Properties of H62 Brass Subjected to Laser Shock Peening[J]. Acta Optica Sinica, 2018, 38(10): 1014002

段海峰,罗开玉,鲁金忠. 激光冲击强化H62黄铜摩擦磨损性能研究[J]. 光学学报, 2018, 38(10): 1014002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF