首页 > 论文 > 光学学报 > 38卷 > 10期(pp:1014001--1)

外延叠层多有源区激光器的结构优化设计

Optimization Design of Epitaxially-Stacked Multiple-Active-Region Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于分离的非对称大光腔结构,对激射波长为905 nm的外延叠层三有源区大功率脉冲半导体激光器的外延结构进行优化设计。通过优化近场光场模式、自由载流子吸收损耗、相邻发光区之间距离以及掺杂浓度分布等关键参数,提高了器件的脉冲峰值功率,降低了内损耗和远场垂直发散角。研制的1 mm腔长、100 μm条宽的三有源区大功率半导体激光器,经由150 ns脉宽和6.67 kHz重复频率的脉冲测试,在34.5 A脉冲电流强度驱动下实现了122 W的脉冲峰值功率输出。器件的斜率效率为3.54 W/A,单个发光区实现了折合91.75%的内量子效率和2.05 cm-1的内损耗,水平方向和垂直方向上的半峰全宽远场发散角分别为7.8° 和 27.6°。

Abstract

Based on separated asymmetric large optical cavity, the high power pulsed semiconductor lasers with epitaxially-stacked three-active-region structure at laser central wavelength of 905 nm are investigated. We optimize the critical parameters, including near-field optical intensity model, free-carrier absorption loss, the distance between adjacent luminescent regions and the doping levels of each layer, to obtain higher peak output power, lower internal optical loss and smaller far-field vertical divergence angle. A three-active-region high power semiconductor laser with 1 mm cavity length and 100 μm stripe width is developed. We achieve a peak output power of 122 W driven by 34.5 A pulse current intensity at 150 ns pulse width and 6.67 kHz repetition rate. Slope efficiency of 3.54 W/A, equivalent internal quantum efficiency of 91.75% and internal optical loss of 2.05 cm-1 for each emitter are obtained, and far-field divergence angles of 7.8° and 27.6° (full width at half maximum) are achieved in the lateral and vertical directions, respectively.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.4

DOI:10.3788/aos201838.1014001

所属栏目:激光器与激光光学

基金项目:国家重点研发计划(2017YFB0405303)

收稿日期:2018-03-03

修改稿日期:2018-04-19

网络出版日期:2018-05-08

作者单位    点击查看

侯继达:中国科学院大学, 北京 100049中国科学院半导体研究所光电子器件国家工程研究中心, 北京 100083
熊聪:中国科学院半导体研究所光电子器件国家工程研究中心, 北京 100083
祁琼:中国科学院半导体研究所光电子器件国家工程研究中心, 北京 100083
刘素平:中国科学院半导体研究所光电子器件国家工程研究中心, 北京 100083
马骁宇:中国科学院半导体研究所光电子器件国家工程研究中心, 北京 100083

联系人作者:熊聪(xiongcong@semi.ac.cn); 侯继达(houjd@semi.ac.cn);

【1】Schwarz B. Mapping the world in 3D[J]. Nature Photonics, 2010, 4(7): 429-430.

【2】Glennie C, Lichti D D. Temporal stability of the velodyne HDL-64E S2 scanner for high accuracy scanning applications[J]. Remote Sensing, 2011, 3(3): 539-553.

【3】Zeng L, Liu G D, Yang D W, et al. Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation[J]. Applied Physics Letters, 2013, 102(5): 053704.

【4】Zeng L, Liu G D, Yang D W, et al. 3D-visual laser-diode-based photoacoustic imaging[J]. Optics Express, 2012, 20(2): 1237-1246.

【5】Hall D S. High definition lidar system: US8767190 B2[P/OL]. 2011-05-17[2014-07-01]. http:∥www. google. com/patents/US8767190.

【6】Glennie C, Lichti D D. Static calibration and analysis of the velodyne HDL-64E S2 for high accuracy mobile scanning[J]. Remote Sensing, 2010, 2(6): 1610-1624.

【7】Glennie C, Brooks B, Ericksen T, et al. Compact multipurpose mobile laser scanning system-initial tests and results[J]. Remote Sensing, 2013, 5(2): 521-538.

【8】Wojtanowski J, Zygmunt M, Kaszczuk M, et al. Comparison of 905 nm and 1550 nm semiconductor laser rangefinders’ performance deterioration due to adverse environmental conditions[J]. Opto-Electronics Review, 2014, 22(3): 183-190.

【9】van der Ziel J P, Tsang W T. Integrated multilayer GaAs lasers separated by tunnel junctions[J]. Applied Physics Letters, 1982, 41(6): 499-501.

【10】Garcia J C, Rosencher E, Collot P, et al. Epitaxially stacked lasers with Esaki junctions: A bipolar cascade laser[J]. Applied Physics Letters, 1997, 71(26): 3752-3754.

【11】Cui B F, Guo W L, Du X D, et al. A tunnel regenerated coupled multi-active-region large optical cavity laser with a high quality beam[J]. Chinese Physics B, 2012, 21(9): 094209.

【12】Li H, Qu Y, Zhang J J, et al. High power 905 nm InGaAs tunnel junction series stacked semiconductor lasers[J]. High Power Laser and Particle Beams, 2013, 25(10): 2517-2520.
李辉, 曲轶, 张剑家, 等. 高功率905 nm InGaAs隧道结串联叠层半导体激光器[J]. 强激光与粒子束, 2013, 25(10): 2517-2520.

【13】Marmalyuk A A, Davydova E I, Zverkov M V, et al. Laser diodes with several emitting regions (λ= 800-1100 nm) on the basis of epitaxially integrated heterostructures[J]. Semiconductors, 2011, 45(4): 519-525.

【14】Davydova E I, Zverkov M V, Konyaev V P, et al. High-power laser diodes based on triple integrated InGaAs/AlGaAs/GaAs structures emitting at 0.9 μm[J]. Quantum Electronics, 2009, 39(8): 723-726.

【15】Zverkov M V, Konyaev V P, Krichevskii V V, et al. Double integrated nanostructures for pulsed 0.9 μm laser diodes[J]. Quantum Electronics, 2008, 38(11): 989-992.

【16】Gokhale M R, Dries J C, Studenkov P V, et al. High-power high-efficiency 0.98 μm wavelength InGaAs-(In)GaAs(P)-InGaP broadened waveguide lasers grown by gas-source molecular beam epitaxy[J]. IEEE Journal of Quantum Electronics, 1997, 33(12): 2266-2276.

【17】Ryvkin B S, Avrutin E A. Asymmetric, nonbroadened large optical cavity waveguide structures for high-power long-wavelength semiconductor lasers[J]. Journal of Applied Physics, 2005, 97(12): 123103.

【18】Tan S Y, Zhai T, Zhang R K, et al. Graded doping low internal loss 1060-nm InGaAs/AlGaAs quantum well semiconductor lasers[J]. Chinese Physics B, 2015, 24(6): 064211.

【19】Botez D. Design considerations and analytical approximations for high continuous-wave power, broad-waveguide diode lasers[J]. Applied Physics Letters, 1999, 74(21): 3102-3104.

【20】Wang X Z, Crump P, Wenzel H, et al. Root-cause analysis of peak power saturation in pulse-pumped 1100 nm broad area single emitter diode lasers[J]. IEEE Journal of Quantum Electronics, 2010, 46(5): 658-665.

【21】Wenzel H, Crump P, Pietrzak A, et al. Theoretical and experimental investigations of the limits to the maximum output power of laser diodes[J]. New Journal of Physics, 2010, 12(8): 085007.

【22】Zhang D Y, Xie Y K, Li C Y, et al. Simulation and optimization of high power semicondutor laser microchannel heat sink[J]. Chinese Journal of Lasers, 2017, 44(2): 0202008.
张冬云, 谢印开, 李丛洋, 等. 高功率半导体激光器微通道热沉的模拟优化[J]. 中国激光, 2017, 44(2): 0202008.

【23】Kong Z Z, Cui B F, Huang X Z, et al. Study on performance improvement of high power semiconductor lasers[J]. Laser & Optoelectronics Progress, 2017, 54(7): 071403.
孔真真, 崔碧峰, 黄欣竹, 等. 大功率半导体激光器性能改善的研究[J]. 激光与光电子学进展, 2017, 54(7): 071403.

引用该论文

Hou Jida,Xiong Cong,Qi Qiong,Liu Suping,Ma Xiaoyu. Optimization Design of Epitaxially-Stacked Multiple-Active-Region Lasers[J]. Acta Optica Sinica, 2018, 38(10): 1014001

侯继达,熊聪,祁琼,刘素平,马骁宇. 外延叠层多有源区激光器的结构优化设计[J]. 光学学报, 2018, 38(10): 1014001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF