空芯反谐振光纤与单模光纤的低损耗熔接研究
Low-Loss Fusion Splice of Hollow-Core Anti-Resonant Fiber and Single Mode Fiber
摘要
光子晶体光纤因具有设计自由、导光机制新颖等优势而被人们广泛关注。相比于带隙型光子晶体光纤和Kagome光纤,空芯反谐振光纤(HC-ARF)由于具有结构简单、单模导光、传输谱宽且损耗低的特点,在紫外/中红外光传输、高功率激光产生、非线性光学及传感等领域都具有很好的应用。但是HC-ARF要真正得到广泛应用,其与普通单模光纤的熔接必须简便且损耗低,然而,HC-ARF包层特殊的毛细管孔结构在熔接过程中容易坍塌,且其模场直径不同于普通单模光纤,故直接熔接时损耗很大。为此,引入一段纤芯直径为20 μm的实芯大模场光纤作为模场过渡,实现了HC-ARF和普通单模光纤之间的熔接,熔接损耗由直接熔接的3 dB降至0.844 dB。
Abstract
Photonic crystal fibers have attracted intensive attention because of its advantages of a freedom design and a novel light guiding mechanism. Compared with photonic bandgap fibers and Kagome fibers, the hollow-core anti-resonant fibers (HC-ARF) exhibit excellent optical properties in terms of simple structure, single mode transmission, broad transmission bandwidth and low optical attenuation. HC-ARF is suitable for UV/mid-IR light transmission, high power laser generation, nonlinear optics, sensing and so on. However, in order for HC-ARF to be widely used, the fusion of HC-ARF and a conventional single-mode fiber must be simple and low-loss. While, because the special cladding capillaries of HC-ARF are easily destroyed during splicing, and the mode field of HC-ARF is different with single mode fiber, the direct splicing technique easily leads to a large loss. So we use a solid-core large mode area fiber with a core diameter of 20 μm as an intermediate, to obtain a low-loss fusion splice between a HC-ARF and a conventional single mode fiber. Compared to the direct splicing technique, which yields a splice loss of 3 dB, the intermediate fiber technique makes the overall insertion loss decrease to 0.844 dB.
中图分类号:TN252
所属栏目:光纤光学与光通信
基金项目:国家自然科学基金(10101999201602)
收稿日期:2018-04-02
修改稿日期:2018-04-28
网络出版日期:2018-05-08
作者单位 点击查看
高寿飞:北京工业大学激光工程研究院, 北京 100124
汪滢莹:北京工业大学激光工程研究院, 北京 100124
王璞:北京工业大学激光工程研究院, 北京 100124
【1】Roberts P, Couny F, Sabert H, et al. Ultimate low loss of hollow-core photonic crystal fibres[J]. Optics Express, 2005, 13(1): 236-244.
【2】de Matos C, Taylor J, Hansen T, et al. All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber[J]. Optics Express, 2003, 11(22): 2832-2837.
【3】Wheeler N V, Petrovich M N, Slavik R, et al. Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission[C]∥National Fiber Optic Engineers Conference. Washington: Optical Society of America, 2012: PDP5A. 2.
【4】Chaudhuri S, van Putten L D, Poletti F, et al. Low loss transmission in negative curvature optical fibers with elliptical capillary tubes[J]. Journal of Lightwave Technology, 2016, 34(18): 4228-4231.
【5】Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: technology and applications[J]. Nanophotonics, 2013, 2(5/6): 315-340.
【6】Benabid F, Roberts P J. Linear and nonlinear optical properties of hollow core photonic crystal fiber[J]. Journal of Modern Optics, 2011, 58(2): 87-124.
【7】Poletti F, Wheeler N V, Petrovich M N, et al. Towards high-capacity fibre-optic communications at the speed of light in vacuum[J]. Nature Photonics, 2013, 7(4): 279-284.
【8】Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 2012, 6(7): 423-431.
【9】Gao S F, Wang Y Y, Tian C P, et al. Splice loss optimization of a photonic bandgap fiber via a high V-number fiber[J]. IEEE Photonics Technology Letters, 2014, 26(21): 2134-2137.
【12】Bourliaguet B, Pare C, Emond F, et al. Microstructured fiber splicing[C]. Optics Express, 2003, 11(25): 3412-3417.
【13】Xiao L M, Demokan M S, Jin W, et al. Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect[J]. Journal of Lightwave Technology, 2007, 25(11): 3563-3574.
【14】Marcuse D. Loss analysis of single-mode fiber splices[J]. Bell System Technical Journal, 1977, 56(5): 703-718.
【15】Zheng X M, Debord B, Vincetti L, et al. Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF[J]. Optics Express, 2016, 24(13): 14642-14647.
【16】Aghaie K Z, Digonnet M J, Fan S H. Optimization of the splice loss between photonic-bandgap fibers and conventional single-mode fibers[J]. Optics Letters, 2010, 35(12): 1938-1940.
【17】Hayes J R, Sandoghchi S R, Bradley T D, et al. Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications[J]. Journal of Lightwave Technology, 2017, 35(3): 437-442.
引用该论文
Li Xiaoqian,Gao Shoufei,Wang Yingying,Wang Pu. Low-Loss Fusion Splice of Hollow-Core Anti-Resonant Fiber and Single Mode Fiber[J]. Acta Optica Sinica, 2018, 38(10): 1006002
李晓倩,高寿飞,汪滢莹,王璞. 空芯反谐振光纤与单模光纤的低损耗熔接研究[J]. 光学学报, 2018, 38(10): 1006002