首页 > 论文 > 光学学报 > 38卷 > 10期(pp:1026001--1)

典型卫星表面材料可见光偏振特性分析

Analysis of Visible Polarization Characteristics of Typical Satellite Surface Materials

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

对典型卫星表面材料进行了可见光偏振测试,基于测试数据完成了表面材料的可见光反射特性分析;推导分析了基于偏振双向反射分布函数的可见光反射偏振传输模型,并基于测试数据对模型的模拟计算精度进行了评价。结果表明:模型计算的反射偏振度与实测结果有较好的一致性,且在镜面反射情况下,典型卫星表面常用的主体包覆材料偏振度最小,但偏振角有最大值。即材质表面组成成份不同,其可见光反射偏振特性有较大差异。结合考虑目标表面的偏振特性更有助于区分目标的物质组成,研究成果可为改善典型卫星目标探测的有效性提供基础数据支撑。

Abstract

We carry out a visible spectra polarization test to the typical satellite surface materials, and accomplish visible reflect characteristic test based on test data. Then, we deduce the visible reflect polarization transfer model which is based on the polarization bidirectional reflectance distribution function, and evaluate the simulated computation accuracy of the model based on measured data. The results show that the reflected polarization degree of the simulated model is in good agreement with the measured results. And the polarization degree of coating materials used for typical satellite surface is usually minimum at the condition of mirror reflection, but the angle of polarization has the maximum value. That is to say, if the surface compositions of materials are different, the polarization characteristics of the visible light reflection are quite different. It is more helpful to distinguish the material composition of the target by considering the polarization characteristics of the target surface. The research results can provide basic data support for improving the effectiveness of satellite detection.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436.2

DOI:10.3788/aos201838.1026001

所属栏目:物理光学

收稿日期:2018-04-03

修改稿日期:2018-05-16

网络出版日期:2018-05-25

作者单位    点击查看

陈伟力:北京环境特性研究所光学辐射重点实验室, 北京 100854
李军伟:北京环境特性研究所光学辐射重点实验室, 北京 100854
孙仲秋:东北师范大学地理科学学院, 吉林 长春 130024
王淑华:北京环境特性研究所光学辐射重点实验室, 北京 100854
王静:北京环境特性研究所光学辐射重点实验室, 北京 100854
陈艳:北京环境特性研究所光学辐射重点实验室, 北京 100854
邓蓉:北京环境特性研究所光学辐射重点实验室, 北京 100854

联系人作者:陈伟力(64784181@qq.com)

【1】Kissell K E. Polarization effects in the observation of artificial satellites[C]∥Proceeding of IAU Colloquium 23: Plants, Stars and Nebulae (Studied with Photopolarimetry), November 15-17, 1972, Tucson. Tucson: University of Arizona Press, 1974: 371-380.

【2】Stead R P. An investigation of polarization produced by space objects[D]. Dayton: Air Force Institute of Technology, 1967.

【3】Li Y N, Sun X B, Mao Y N, et al. Spectral polarization characteristic of space target[J]. Infrared and Laser Engineering, 2012, 41(1): 205-210.
李雅男, 孙晓兵, 毛永娜, 等. 空间目标光谱偏振特性[J]. 红外与激光工程, 2012, 41(1): 205-210.

【4】Sun Z Q. The study of the polarized factors of snow surfaces and its relationship with snow properties[D]. Changchun: Northeast Normal University, 2013: 25-39.
孙仲秋. 积雪表面偏振特性及其与积雪性质之间关系研究[D]. 长春: 东北师范大学, 2013: 25-39.

【5】Zhang X. Quantitative analysis of influencing factors and interactions of thermal radiation polarization of water[D]. Changchun: Northeast Normal University, 2014: 15-20.
张霞. 水的热辐射偏振影响因素及其交互作用[D]. 长春: 东北师范大学, 2014: 15-20.

【6】Hess M, Priest R. Comparison of polarization bidirectional reflectance distribution function (BRDF) models[C]∥1999 IEEE Aerospace Conference. Proceedings (Cat. No. 99TH8403), March 7, 1999, Colorado, USA. New York: IEEE, 2002, 4: 95-102.

【7】Resnick A, Persons C, Lindquist G. Polarized emissivity and Kirchhoff′s law[J]. Applied optics, 1999, 38(8): 1384-1387.

【8】Priest R G, Meier S R. Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces[J]. Optical Engineering, 2002, 41(5): 988-993.

【9】Conant J A, Iannarilli F J. Development of a combined bidirectional reflectance and directional emittance model for polarization modeling[J]. Proceeding of SPIE, 2002, 4481: 206-215.

【10】Priest R G, Germer T A . Polarimetric BRDF in the microfacet model: theory and measurements[C]∥Proceedings of the 2000 Military Sensing Symposia Specialty Group on Passive Sensors, March 21-23, 2000, Ann Arbor. Infrared Information Analysis Center, 2000, 1: 169-181.

【11】Gartley M G. Polarimetric modeling of remotely sensed scenes in the thermal infrared[D]. Rochester: Rochester Institute of Technology, 2007: 55-61.

【12】Ma S, Bai T Z, Cao F M, et al. Infrared polarimetric scene simulation based on bidirectional reflectance distribution function model[J]. Acta Optica Sinica, 2009, 29(12): 3357-3361.
马帅, 白廷柱, 曹峰梅, 等. 基于双向反射分布函数模型的红外偏振仿真[J]. 光学学报, 2009, 29(12): 3357-3361.

【13】Chen W L, Wang S H, Jin W Q, et al. Research of infrared polarization characteristics based on polarization micro-surface theory[J]. Journal of Infrared and Millimeter Waves, 2014, 33(5): 507-514.
陈伟力, 王淑华, 金伟其, 等. 基于偏振微面元理论的红外偏振特性研究[J]. 红外与毫米波学报, 2014, 33(5): 507-514.

引用该论文

Chen Weili,Li Junwei,Sun Zhongqiu,Wang Shuhua,Wang Jing,Chen Yan,Deng Rong. Analysis of Visible Polarization Characteristics of Typical Satellite Surface Materials[J]. Acta Optica Sinica, 2018, 38(10): 1026001

陈伟力,李军伟,孙仲秋,王淑华,王静,陈艳,邓蓉. 典型卫星表面材料可见光偏振特性分析[J]. 光学学报, 2018, 38(10): 1026001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF