中国激光, 2018, 45 (10): 1006004, 网络出版: 2018-10-12  

铋铒共掺石英光纤的制备与近红外发光特性研究 下载: 786次

Fabrication and Near-Infrared Luminescent Properties of Bismuth/Erbium Co-Doped Silica Fiber
作者单位
上海大学特种光纤与光接入网省部共建重点实验室, 上海 200072
摘要
利用改进化学气相沉积(MCVD)工艺结合原子层沉积(ALD)掺杂技术制备铋铒共掺石英光纤(BEDF), 对其进行熔融拉伸处理, 研究其近红外发光特性。实验结果表明, 随着拉伸长度增加, BEDF的透射谱强度下降, 同时, 在980 nm抽运光激发下, 铋活性中心(BACs)在940 nm和1100 nm波段处荧光的强度随着拉伸长度的增加而明显增强, 当拉伸长度为1.5 cm时, 分别增加8.2 dB和9.7 dB。经熔融拉伸处理后, 仅4.9 cm长的BEDF的荧光强度增强, 这可能是因铋离子的价态变化和铋活性中心浓度的下降所致。这对研究铋相关发光材料在近红外波段的发光机理, 提升发光中心的发光效率具有重要的意义。
Abstract
The bismuth/erbium co-doped silica fiber (BEDF) is fabricated by combination of modified chemical vapor deposition (MCVD) technology with atomic layer deposition (ALD) doping technique. The melt stretching treatments are carried out, and its near-infrared luminescence characteristics are studied. The experimental results show that the transmission spectrum intensity of BEDF is decreased with the increase of the stretching length. At the same time, the luminescence intensities at 940 nm and 1100 nm ascribing to bismuth-related active centers (BACs), under the 980 nm pumping, are obviously increased with the increase of the stretching length, and when the stretching length is 1.5 cm, they are enhanced by 8.2 dB and 9.7 dB, respectively. After stretching treatments, the luminescence intensity enhancement of the 4.9 cm-long BEDF may result from the change of valence states of bismuth ions and the decrease of concentrations of BACs. These findings are of great significance for studying the near-infrared luminescent mechanism of bismuth related luminescent materials and improving the luminescent efficiency of luminescent centers.

何涛, 文建湘, 王骞, 庞拂飞, 陈振宜, 王廷云. 铋铒共掺石英光纤的制备与近红外发光特性研究[J]. 中国激光, 2018, 45(10): 1006004. He Tao, Wen Jianxiang, Wang Qian, Pang Fufei, Chen Zhenyi, Wang Tingyun. Fabrication and Near-Infrared Luminescent Properties of Bismuth/Erbium Co-Doped Silica Fiber[J]. Chinese Journal of Lasers, 2018, 45(10): 1006004.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!