Chinese Optics Letters, 2018, 16 (10): 100604, Published Online: Oct. 12, 2018  

All-fiber linear polarization and orbital angular momentum modes amplifier based on few-mode erbium-doped fiber and long period fiber grating Download: 859次

Author Affiliations
Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
Abstract
A few-mode erbium-doped fiber (FM-EDF) is fabricated using modified chemical vapor deposition in combination with liquid solution. The core and cladding diameters of the fiber are approximately 19.44 and 124.12 μm, respectively. The refractive index difference is 0.98%, numerical aperture (NA) is 0.17, and normalized cut-off frequency at 1550 nm is 6.81. Therefore, it is a five-mode fiber, and can be used as a higher-order mode gain medium. Furthermore, a long period fiber grating (LPFG) is fabricated, which can convert LP01 mode to LP11 mode, and its conversion efficiency is up to 99%. The first-order orbital angular momentum (OAM) is also generated by combining the LPFG and polarization controller (PC). Then, an all-fiber amplification system based on the FM-EDF and LPFG, for LP11 mode and first-order OAM beams, is built up. Its on-off gain of the LP11 mode beam is 37.2 dB at 1521.2 nm. The variation, whose transverse mode field intensity of first-order OAM is increased with the increase of pumping power, is obvious. These show that both the LP11 mode and first-order OAM beams are amplified in the all-fiber amplification system. This is a novel all-fiber amplification scheme, which can be used in the optical communication fields.

Jianfei Xing, Jianxiang Wen, Jie Wang, Fufei Pang, Zhenyi Chen, Yunqi Liu, Tingyun Wang. All-fiber linear polarization and orbital angular momentum modes amplifier based on few-mode erbium-doped fiber and long period fiber grating[J]. Chinese Optics Letters, 2018, 16(10): 100604.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!