首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:101702--1)

基于法布里-珀罗微腔激光的高分辨率熔解技术研究

High Resolution Melting Technology Based on Fabry-Perot Microcavity Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于所制备的高品质法布里-珀罗(F-P)光学微腔, 研究了一种基于激光信号的腔内高灵敏度熔解(HRM)曲线检测方法, 即将F-P光学微腔作为微激光腔, 将嵌入式饱和染料作为增益介质, 以产生的激光信号作为检测信号, 通过温度扫描, 实现了对碱基错配DNA分子的高灵敏度检测与筛查。分别研究了25个碱基对和50个碱基对的目标DNA及碱基错配DNA的熔解曲线, 理论及实验结果表明:基于激光信号的HRM检测技术具有低的熔解温度和高的信噪比。

Abstract

We study a high-resolution melting (HRM) analysis method based on laser signal in self-made Fabry-Perot (FP) optical microcavity with high quality. We utilize the F-P optical microcavity as the micro-laser cavity, intercalated saturation dyes as the gain media and emitted laser signal as the detection signal to achieve high-resolution detection and screening of mismatched DNA by temperature scanning. We investigate on the melting curves of target DNA and mismatched DNA with 25 base-pairs and 50 base-pairs, respectively. Theoretical and experimental results indicate that the HRM detection method based on laser signal has lower melting temperature and higher signal-to-noise ratio.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:R-331;O433.5+4

DOI:10.3788/lop55.101702

所属栏目:医用光学与生物技术

基金项目:国家自然科学基金面上项目(61471254)、山西省自然科学基金项目(201601D011010)

收稿日期:2018-04-10

修改稿日期:2018-05-04

网络出版日期:2018-05-09

作者单位    点击查看

梁希月:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
侯梦迪:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
张婷婷:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
邱诚玉:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
王文杰:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024

联系人作者:王文杰(wangwenjie@tyut.edu.cn); 梁希月(lxiyue913@163.com);

【1】Wang D G, Fan J B, Siao C J, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome[J]. Science, 1998, 280(5366): 1077-1082.

【2】Christopoulos T K. Nucleic acid analysis[J]. Analytical Chemistry, 1999, 71(18): 425-438.

【3】Hawkins R D, Hon G C, Ren B. Next-generation genomics: an integrative approach[J]. Nature Reviews Genetics, 2010, 11(7): 476-486.

【4】Wittwer C T. High-resolution genotyping by amplicon melting analysis using LCGreen[J]. Clinical Chemistry, 2003, 49(6): 853-860.

【5】Reed G H, Wittwer C T. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis[J]. Clinical Chemistry, 2004, 50(10): 1748-1754.

【6】Montgomery J, Wittwer C T, Palais R, et al. Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis[J]. Nature Protocols, 2007, 2(1): 59-66.

【7】Gudnason H, Dufva M, Bang D D, et al. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature[J]. Nucleic Acids Research, 2007, 35(19): e127.

【8】Rodriguez López C M, Guzmán Asenjo B, Lloyd A J, et al. Direct detection and quantification of methylation in nucleic acid sequences using high-resolution melting analysis[J]. Analytical Chemistry, 2010, 82(21): 9100-9108.

【9】Zeng X Y, Zhang K D, Pan J, et al. Chemiluminescence detector based on a single planar transparent digital microfluidic device[J]. Lab on A Chip, 2013, 13(14): 2714-2720.

【10】Ju Y R, Song J, Geng Z X, et al. A microfluidics cytometer for mice anemia detection[J]. Lab on A Chip, 2012, 12(21): 4355-4362.

【11】Lee W, Fan X D. Intracavity DNA melting analysis with optofluidic lasers[J]. Analytical Chemistry, 2012, 84(21): 9558-9563.

【12】Shopova S I, Cupps J M, Zhang P, et al. Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer[J]. Optics Express, 2007, 15(20): 12735-12742.

【13】Lee W, Li H, Suter J D, et al. Tunable single mode lasing from an on-chip optofluidic ring resonator laser[J]. Applied Physics Letters, 2011, 98(6): 061103.

【14】Wang W J, Zhou C H, Zhang T T, et al. Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities[J]. Lab on A Chip, 2015, 15(19): 3862-3869.

【15】Zhang T T, Zhou C H, Wang W J, et al. Generation of low-threshold optofluidic lasers in a stable Fabry-Pérot microcavity[J]. Optics & Laser Technology, 2017, 91: 108-111.

【16】SantaLucia J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics[J]. Proceedings of the National Academy of Sciences, 1998, 95(4): 1460-1465.

【17】Li W Y, Wang P, Zhang J W, et al. Three-dimensional visualization for numerical simulation data of laser transmission[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111410.
黎万义, 王鹏, 张军伟, 等. 激光传输数值模拟数据的三维可视化研究[J]. 激光与光电子学进展, 2017, 54(11): 111410.

【18】Zhang X H, Liu C, Liang C, et al. Microlens array applied for laser induced fluorescence detection[J]. Laser & Optoelectronics Progress, 2017, 54(8): 080402.
张学海, 刘冲, 梁超, 等. 应用于激光诱导荧光检测的微透镜阵列[J]. 激光与光电子学进展, 2017, 54(8): 080402.

引用该论文

Liang Xiyue,Hou Mengdi,Zhang Tingting,Qiu Chengyu,Wang Wenjie. High Resolution Melting Technology Based on Fabry-Perot Microcavity Laser[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101702

梁希月,侯梦迪,张婷婷,邱诚玉,王文杰. 基于法布里-珀罗微腔激光的高分辨率熔解技术研究[J]. 激光与光电子学进展, 2018, 55(10): 101702

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF