首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:101006--1)

基于改进复杂度的红外弱小目标区域检测算法

Infrared Small Target Regions Detection Based on Improved Image Complexity

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

方差加权信息熵作为稳健的红外背景复杂程度定量描述指标, 在红外弱小目标检测中取得了不错的效果, 但由于其计算复杂, 导致算法实时性差, 很难在工程上应用。为了能快速地在红外复杂天空背景中识别到弱小目标区域, 对传统的基于图像方差加权信息熵的滤波算法进行改进。先对图像进行显著性区域分割, 粗略地得到显著性区域, 然后对显著性区域计算双分析模板区域方差加权信息熵差值, 根据复杂天空中典型区域的双分析模板区域方差加权信息熵差值的特点将候选目标区域识别出来。实验表明, 用本文算法既可以排除大量的复杂天空背景干扰区域, 又大幅缩短了算法运行的时间。

Abstract

Information entropy weighted by image variance is a robust quantitative indicator describing the complexity of image. It can achieve good results by using information entropy weighted by image variance to detect the infrared small target. However, it is difficult to apply in engineering application due to its complex calculation and poor real-time performance. To recognize the small target regions under infrared complex sky background quickly, we improve the traditional image filtering algorithm, which uses information entropy weighted by image variance. Images are segmented according to their saliency first. Significant regions are selected roughly, and only the information entropy weighted by image variance of the dual-mode regions of the salient regions is calculated. Then, the candidate target regions are recognized according to the typical regional features of the information entropy weighted by image variance of the dual-mode regions under complex sky background. The experimental results show that the proposed algorithm can eliminate the disturbance of the complex sky background, and reduce the running time of the algorithm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN911.73

DOI:10.3788/lop55.101006

所属栏目:图像处理

基金项目:国家973计划(613271010204)

收稿日期:2018-04-16

修改稿日期:2018-05-08

网络出版日期:2018-05-25

作者单位    点击查看

朱婧文:上海航天控制技术研究所, 上海 201109中国航天科技集团公司红外探测技术研发中心, 上海 201109
刘文好:上海航天控制技术研究所, 上海 201109中国航天科技集团公司红外探测技术研发中心, 上海 201109
印剑飞:上海航天控制技术研究所, 上海 201109中国航天科技集团公司红外探测技术研发中心, 上海 201109
刘礼城:上海航天控制技术研究所, 上海 201109上海市空间智能控制技术重点实验室, 上海 201109

联系人作者:朱婧文(707929500@qq.com)

【1】Yao C Q, Chen W. Infrared dim target detection based on improved particle swarm optimization algorithm[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111101.
姚成乾, 陈伟. 基于改进粒子算法的红外弱小目标检测研究[J]. 激光与光电子学进展, 2017, 54(11): 111101.

【2】Yang L. Study on infrared small target detection and tracking algorithm under complex backgrounds[D]. Shanghai: Shanghai Jiao Tong University, 2006: 75-86.
杨磊. 复杂背景条件下的红外小目标检测与跟踪算法研究[D]. 上海: 上海交通大学, 2006: 75-86.

【3】Li X. Research on infrared dim target detection under complex background[D]. Xi′an: Xidian University, 2010: 25-42.
李欣. 复杂背景下红外弱小目标检测算法研究[D]. 西安: 西安电子科技大学, 2010: 25-42.

【4】Bakhdavlatov S, Mao Y X, Gong P, et al. Target detection, segmentation and geometric centre of the object based on local entropy algorithm[C]. 15th Chinese Conference on System Simulation Technology & Application, 2014: 237-241.
Bakhdavlatov S, 毛羽忻, 龚萍, 等. 基于局部熵值图的目标检测分割及质心计算[C]. 第15届中国系统仿真技术及其应用年会论文集, 2014: 237-241.

【5】Wang Z H, Liu J G, Deng H. Small-target infrared image processing based on novel weighted-local entropy[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2017, 45(8): 42-46.
王忠华, 刘建国, 邓鹤. 基于新的加权局部熵的小目标红外图像处理[J]. 华中科技大学学报(自然科学版), 2017, 45(8): 42-46.

【6】Wang X, Lv G F, Xu L Z. Infrared dim target detection based on visual attention[J]. Infrared Physics & Technology, 2012, 55(6): 513-521.

【7】Chen C L P, Li H, Wei Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581.

【8】Peng Z T, Chen F D, Tang J, et al. Extracting multi-scale laser damage in optics on difference of Gaussian filter[J]. High Power Laser and Particle Beams, 2017, 29(9): 091003.
彭志涛, 陈风东, 唐军, 等. 高斯差分滤波多尺度损伤提取方法[J]. 强激光与粒子束, 2017, 29(9): 091003.

引用该论文

Zhu Jingwen,Liu Wenhao,Yin Jianfei,Liu Licheng. Infrared Small Target Regions Detection Based on Improved Image Complexity[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101006

朱婧文,刘文好,印剑飞,刘礼城. 基于改进复杂度的红外弱小目标区域检测算法[J]. 激光与光电子学进展, 2018, 55(10): 101006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF