首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:102702--1)

基于量子反馈保护量子比特的相干性

Protection of Quantum Coherence of Qubit Based on Quantum Feedback

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过采用直接的量子反馈方法控制量子比特的量子相干性, 研究了与单模腔相互作用的量子比特的量子相干性的动力学演化。利用l1范数相干性和量子相对熵相干性描述量子系统的相干性, 分析了量子反馈和外部驱动对系统相干性演化的影响。研究结果表明, 两种相干性表现出相同的动力学特性, 量子反馈减慢了量子相干性的衰减, 在一定程度上保护了量子相干性。若考虑外部驱动, 在强驱动下, 长时极限的稳态的量子相干性为零, 而在非强驱动下相干性达到一个不变的最大值。

Abstract

Based on the direct quantum feedback method for controlling the quantum coherence of a qubit, the dynamical evolution of the quantum coherence of a qubit which interacts with a single mode cavity is investigated. By using the l1 norm of coherence and the relative entropy of coherence to quantify the quantum coherence, the effects of the quantum feedback and the external driving on the evolution of the quantum coherence are analyzed. The research results show that, the dynamical characteristics of these two types of coherences are the same. The quantum feedback slows the decay of the quantum coherence and plays a certain protective role. When the external driving is considered, the coherence of the steady state in the long limit becomes zero under the strong-driving condition, while the quantum coherence reaches a stable maximum value under the non-strong-driving condition.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O431.2

DOI:10.3788/lop55.102702

所属栏目:量子光学

基金项目:国家自然科学基金(11275064)、湖南省自然科学基金(2016JJ2045)、湖南省教育厅科研项目 (16C0469)

收稿日期:2018-04-18

修改稿日期:2018-04-27

网络出版日期:2018-05-09

作者单位    点击查看

王国友:湖南工业大学理学院, 湖南 株洲 412007
郭有能:长沙学院电子与通信工程系, 湖南 长沙 410022

联系人作者:郭有能(guoxuyan2007@163.com)

【1】Wang J, Wiseman H M, Milburn G J. Dynamical creation of entanglement by homodyne-mediated feedback[J]. Physical Review A, 2005, 71(4): 042309.

【2】Carvalho A R R, Reid A J S, Hope J J. Controlling entanglement by direct quantum feedback[J]. Physical Review A, 2008, 78(1): 012334.

【3】Li Y, Luo B, Guo H. Entanglement and quantum discord dynamics of two atoms under practical feedback control[J]. Physical Review A, 2011, 84(1): 012316.

【4】Yang X L, Sun T, Zhang B, et al. Classical-field-assisted three-atom quantum entanglement dynamics[J]. Acta Optica Sinica, 2016, 36(12): 1227001.
杨秀丽, 孙童, 张博, 等. 经典场辅助下的三原子量子纠缠动力学[J]. 光学学报, 2016, 36(12): 1227001.

【5】Qiu C D, Lu D M. Entanglement characteristics in two-dimensional coupled cavity systems[J]. Acta Optica Sinica, 2016, 36(5): 0527001.
邱昌东, 卢道明. 两维耦合腔系统中的纠缠特性[J]. 光学学报, 2016, 36(5): 0527001.

【6】Yan L. Evolution property of entanglement between two subsystems[J]. Laser & Optoelectronics Progress, 2017, 54(3): 032701.
闫丽. 两子系统间纠缠演化特性[J]. 激光与光电子学进展, 2017, 54(3): 032701.

【7】Baumgratz T, Cramer M, Plenio M B. Quantifying coherence[J]. Physical Review Letters, 2014, 113(14): 140401.

【8】Shao L H, Xi Z J, Fan H, et al. Fidelity and trace-norm distances for quantifying coherence[J]. Physical Review A, 2015, 91(4): 042120.

【9】Rana S, Parashar P, Lewenstein M. Trace-distance measure of coherence[J]. Physical Review A, 2016, 93(1): 012110.

【10】Streltsov A, Singh U, Dhar H S, et al. Measuring quantum coherence with entanglement[J]. Physical Review Letters, 2015, 115(2): 020403.

【11】Ma J, Yadin B, Girolami D, et al. Converting coherence to quantum correlations[J]. Physical Review Letters, 2016, 116(16): 160407.

【12】Girolami D. Observable measure of quantum coherence in finite dimensional systems[J]. Physical Review Letters, 2014, 113(17): 170401.

【13】Pires D P, Céleri L C, Soares-Pinto D O. Geometric lower bound for a quantum coherence measure[J]. Physical Review A, 2015, 91(4): 042330.

【14】Winter A, Yang D. Operational resource theory of coherence[J]. Physical Review Letters, 2016, 116(12): 120404.

【15】Singh U, Bera M N, Dhar H S, et al. Maximally coherent mixed states: Complementarity between maximal coherence and mixedness[J]. Physical Review A, 2015, 91(5): 052115.

【16】Chitambar E, Streltsov A, Rana S, et al. Assisted distillation of quantum coherence[J]. Physical Review Letters, 2016, 116(7): 070402.

【17】Wiseman H M, Milburn G J. Quantum theory of optical feedback via homodyne detection[J]. Physical Review Letters, 1993, 70(5): 548-551.

【18】Wiseman H M. Quantum theory of continuous feedback[J]. Physical Review A, 1994, 49(3): 2133-2150.

【19】Wiseman H M. Adaptive phase measurements of optical modes: Going beyond the marginal Q distribution[J]. Physical Review Letters, 1995, 75(25): 4587-4590.

【20】Geremia J M, Stockton J K, Mabuchi H. Real-time quantum feedback control of atomic spin-squeezing[J]. Science, 2004, 304(5668): 270-273.

【21】Reiner J E, Smith W P, Orozco L A, et al. Quantum feedback in a weakly driven cavity QED system[J]. Physical Review A, 2004, 70(2): 023819.

【22】Bushev P, Rotter D, Wilson A, et al. Feedback cooling of a single trapped ion[J]. Physical Review Letters, 2006, 96(4): 043003.

【23】Zheng Q, Ge L, Yao Y, et al. Enhancing parameter precision of optimal quantum estimation by direct quantum feedback[J]. Physical Review A, 2015, 91(3): 033805.

【24】Wang L C, Huang X L, Yi X X. Effect of feedback on the control of a two-level dissipative quantum system[J]. Physical Review A, 2008, 78(5): 052112.

【25】Sun H Y, Shu P L, Li C, et al. Feedback control on geometric phase in dissipative two-level systems[J]. Physical Review A, 2009, 79(2): 022119.

【26】Liao Q H, Xu J, Yan Q R, et al. Control of entanglement and entropy squeezing of the atom driven by a classical field interacting with field under the dressed-state representation[J]. Chinese Journal of Lasers, 2015, 42(5): 0518001.
廖庆洪, 许娟, 鄢秋荣, 等. 缀饰态表象下驱动原子和场相互作用系统的纠缠和熵压缩调控[J]. 中国激光, 2015, 42(5): 0518001.

引用该论文

Wang Guoyou,Guo Youneng. Protection of Quantum Coherence of Qubit Based on Quantum Feedback[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102702

王国友,郭有能. 基于量子反馈保护量子比特的相干性[J]. 激光与光电子学进展, 2018, 55(10): 102702

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF