首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:103201--1)

高功率小型光纤飞秒激光放大系统

High Power Compact Fiber Femtosecond Laser Amplification System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

介绍一种新的高功率、便携式光纤飞秒激光系统。该系统以半导体可饱和吸收锁模光纤激光器作为种子源, 通过光纤布拉格光栅对波长进行选择。振荡器输出的种子光经过两级单模掺镱光纤、一级双包层掺镱光纤预放大后, 进入主放大系统。主放大系统采用大模场掺镱光子晶体光纤放大, 并通过控制放大过程中产生的非线性积累, 有效降低非线性效应对脉冲的影响。加入声光调制器, 使输出重复频率可调, 并通过透射式光栅对, 对输出的脉冲进行压缩, 最终获得平均功率为1.34 W、重复频率为300 kHz、工作波长为1030 nm、脉冲宽度为202 fs的激光输出, 对应单脉冲能量为4.5 μJ, 峰值功率为22 MW。整套激光系统便携、稳定、成本较低, 可以进行广泛的生产应用。

Abstract

A high power portable femtosecond fiber laser system is demonstrated. This system uses semiconductor saturable absorb mode-locked fiber laser as the seed source and selects the wavelength through the fiber Bragg grating. The seed light output by the oscillator enters the main amplifier system after being pre-amplified by two-stage single-mode ytterbium-doped fiber and first-order double-clad ytterbium-doped fiber. The main amplifier uses a large mode field of ytterbium-doped photonic crystal fiber to amplifier, and effectively reduces the effect of nonlinear effect on the pulse by controlling the nonlinear accumulation in the amplification process. An acousto-optic modulator is added to make the output repetition frequency adjustable, and the output pulse is compressed through the transmission grating to obtain the laser output. The final output has an average power of 1.34 W, a repetition rate of 300 kHz, a working wavelength of 1030 nm and a pulse duration of 202 fs, and the corresponding single pulse energy is 4.5 μJ, peak power is 22 MW. The complete laser system is portable, stable, and cost-effective, and can be widely used in production.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437;TN248

DOI:10.3788/lop55.103201

所属栏目:超快光学

基金项目:国家自然科学基金(61505106)、上海市晨光计划(15CG51)

收稿日期:2018-04-23

修改稿日期:2018-05-22

网络出版日期:2018-05-25

作者单位    点击查看

周锋全:上海理工大学光电信息与计算机工程学院, 上海 200093
袁帅:上海理工大学光电信息与计算机工程学院, 上海 200093
郭政儒:上海理工大学光电信息与计算机工程学院, 上海 200093
郝强:上海理工大学光电信息与计算机工程学院, 上海 200093
徐晖:上海理工大学光电信息与计算机工程学院, 上海 200093
曾和平:上海理工大学光电信息与计算机工程学院, 上海 200093

联系人作者:袁帅(ye_zoom@126.com)

【1】Zhu J F, Wei Z Y. Femtosecond laser micro-nano fabrication[J]. Physics, 2006, 35(8): 679-683.
朱江峰, 魏志义. 飞秒激光精密微纳加工的研究进展[J]. 物理, 2006, 35(8): 679-683.

【2】Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105.

【3】Hu C Z, Chen T, Jiang P P, et al. Broadband high-power mid-IR femtosecond pulse generation from an ytterbium-doped fiber laser pumped optical parametric amplifier[J]. Optics Letters, 2015, 40(24): 5774-5777.

【4】Liu M N, Li M T, Sun H B. 3D femtosecond laser nanoprinting[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011410.
刘墨南, 李木天, 孙洪波. 3D飞秒激光纳米打印[J]. 激光与光电子学进展, 2018, 55(1): 011410.

【5】Peng E, Bell R, Zuhlke C A, et al. Growth mechanisms of multiscale, mound-like surface structures on titanium by femtosecond laser processing[J]. Journal of Applied Physics, 2017, 122(13): 133108.

【6】Li F, Yang Z, Zhao W, et al. Hundred micro-joules level femtosecond fiber laser amplification system[J]. Chinese Journal of Lasers, 2015, 42(12): 1202005.
李峰, 杨直, 赵卫, 等. 百微焦级飞秒光纤激光放大系统[J]. 中国激光, 2015, 42(12): 1202005.

【7】Wang Q Y, Hu M L, Chai L. Progress in nonlinear optics with photonic crystal fibers[J]. Chinese Journal of Lasers, 2006, 33(1): 57-66.
王清月, 胡明列, 柴路. 光子晶体光纤非线性光学研究新进展[J]. 中国激光, 2006, 33(1): 57-66.

【8】Hao Q, Li W X, Zeng H P. High-power Yb-doped fiber amplification synchronized with a few-cycle Ti:sapphire laser[J]. Optics Express, 2009, 17(7): 5815-5821.

【9】Agrawal G P. Optical pulse propagation in doped fiber amplifiers[J]. Physical Review A, 1991, 44(11): 7493-7501.

【10】Rser F, Eidam T, Rothhardt J, et al. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2007, 32(24): 3495-3497.

【11】Eidam T, Rothhardt J, Stutzki F, et al. Fiber chirped-pulse amplification system emitting 38 GW peak power[J]. Optics Express, 2010, 19(1): 255-260.

【12】Fang X H, Hu M L, Liu B W, et al. Hundreds of megawatts peak power multi-core photonic crystal fiber laser amplifier[J]. Chinese Journal of Lasers, 2010, 37(9): 2366-2370.
方晓惠, 胡明列, 刘博文, 等. 百兆瓦峰值功率的多芯光子晶体光纤飞秒激光放大系统[J]. 中国激光, 2010, 37(9): 2366-2370.

【13】Wen L, Liu B W, Song H Y, et al. All polarization-maintaining fiber amplification system to generate high-power and high-quality femtosecond laser pulses[J]. Chinese Journal of Lasers, 2017, 44(2): 0201011.
文亮, 刘博文, 宋寰宇, 等. 高功率、高质量全保偏光纤飞秒激光放大系统[J]. 中国激光, 2017, 44(2): 0201001.

【14】Hao J Y, Liu B W, Song H Y, et al. Femtosecond fiber amplification system based on third-order dispersion compensation technique[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051404.
郝静宇, 刘博文, 宋寰宇, 等. 基于三阶色散补偿的光纤飞秒激光放大系统[J]. 激光与光电子学进展, 2018, 55(5): 051404.

【15】Sun R Y, Tan F Z, Jin D C, et al. 1 μm femtosecond fiber chirped pulse amplification system based on dispersion wave[J]. Chinese Journal of Lasers, 2018,45(1): 0101001.
孙若愚, 谭方舟, 金东臣, 等. 基于色散波的1 μm飞秒光纤啁啾脉冲放大系统[J]. 中国激光, 2018, 45(1): 0101001.

【16】Zaouter Y, Papadopoulos D N, Hanna M, et al. Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers[J]. Optics Letters, 2008, 33(2): 107-109.

【17】Liu Y, Li W X, Luo D P, et al. Generation of 33 fs 935 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express, 2016, 24(10): 10939-10945.

引用该论文

Zhou Fengquan,Yuan Shuai,Guo Zhengru,Hao Qiang,Xu Hui,Zeng Heping. High Power Compact Fiber Femtosecond Laser Amplification System[J]. Laser & Optoelectronics Progress, 2018, 55(10): 103201

周锋全,袁帅,郭政儒,郝强,徐晖,曾和平. 高功率小型光纤飞秒激光放大系统[J]. 激光与光电子学进展, 2018, 55(10): 103201

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF