首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:102301--1)

MAPbI3钙钛矿纳米线光电探测器

MAPbI3 Perovskite Nanowire Photodetectors

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

有机-无机杂化钙钛矿纳米材料因其具有直接带隙、吸收系数高、载流子迁移率高等特点成为新一代优良的光电探测材料。诸多研究表明该纳米材料具有量子点、纳米线、纳米棒、纳米片等多种形貌。纳米线结构具有各向异性, 光生载流子沿其轴向高效传输, 有利于改善光电探测器的电荷提取效率。基于此, 采用自组装生长法制备了钙钛矿纳米线阵列, 当前驱体溶液质量分数从10%逐渐减小为0.2%时, 纳米线直径从微米量级减小至百纳米量级。将0.5%的前驱体溶液所得的纳米线阵列应用到光电探测器中, 器件在2 V偏压、660 nm红光照射下亮暗电流比高达3.7×104, 外量子效率高达180.88%, 而暗电流密度低至1 pA。器件光电探测性能的显著改善归功于自组装生长的纳米线在径向的均匀排布及其高结晶质量。

Abstract

Organic-inorganic hybrid perovskite is a promising new generation of photodetection materials due to its advantages of direct bandgap, high absorption coefficient, and high carrier mobility. Researches have shown that the perovskite nanomaterials have various morphologies, such as quantum dots, nanowires, nanorods, and nanosheets. In particular the anisotropic nanowires photogenerated carriers transmit efficiently along the axial direction, which enhances the charge extraction efficiency of the photodetector. In this paper, the perovskite nanowire arrays were prepared by the self-assembly growth method. When the mass fraction of precursor solution decreased from 10% to 0.2%, the diameter of nanowires was reduced from micron to hundred nanometer scale. A photodetector based on nanowire arrays obtained from 0.5% precursor solution was reported. The light-to-dark response ratio of the device was as high as 3.7×104, the external quantum efficiency reached up to 180.88%, and the dark current density was as low as 1 pA. All data were measured under 2 V bias voltage and 660 nm red light. The remarkable improvement of the photodetector performance is attributed to the radial uniform distribution of the nanowires and high crystallization quality.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O472

DOI:10.3788/lop55.102301

所属栏目:光学器件

基金项目:国家自然科学基金(61775156,61475109,61605136)、山西省自然科学基金优秀青年科学基金(201701D211002)、山西省重点研发(国际合作)项目(201603D421042)、山西省青年拔尖人才资助项目、青年三晋学者基金

收稿日期:2018-04-23

修改稿日期:2018-05-22

网络出版日期:2018-05-25

作者单位    点击查看

刘艳珍:太原理工大学物理与光电工程学院, 新型传感与智能控制教育部重点实验室, 山西 太原 030024
崔艳霞:太原理工大学物理与光电工程学院, 新型传感与智能控制教育部重点实验室, 山西 太原 030024

联系人作者:崔艳霞(yanxiacui@gmail.com)

【1】Miller E M, Zhao Y, Mercado C C, et al. Substrate-controlled band positions in CH3NH3Pbl3 perovskite films[J]. Physical Chemistry Chemical Physics, 2014, 16(40): 22122-22130.

【2】Docampo P, Ball J M, Darwich M, et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates[J]. Nature Communications, 2013, 4(7): 2761.

【3】Shi X, Sun C, Wang X Q. One-dimensional diffraction grating structure for rear reflection surface of thin film silicon solar cells[J]. Laser & Optoelectronics Progress, 2018, 55(1): 010501.
石鑫, 孙诚, 王晓秋. 适用于薄膜硅太阳能电池背反射面的一维衍射光栅结构[J]. 激光与光电子学进展, 2018, 55(1): 010501.

【4】Ramasamy P, Lim D H, Kim B, et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications[J]. Chemical Communications, 2016, 52(10): 2067-2070.

【5】Dong D, Deng H, Hu C, et al. Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices[J]. Nanoscale, 2017, 9(4): 1567-1574.

【6】Wu X Y, Xiong Z Y, Wu L Y, et al. Enhancing perovskite fluorescence emission by gold nanoparticles[J]. Acta Optica Sinica, 2017, 37(9): 0924001.
吴小龑, 熊自阳, 吴凌远, 等. 金纳米粒子增强钙钛矿的荧光发射[J]. 光学学报, 2017, 37(9): 0924001.

【7】Bekenstein Y, Koscher B A, Eaton S W, et al. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies[J]. Journal of the American Chemical Society, 2015, 137(51): 16008-16011.

【8】Fang Y, Dong Q, Shao Y, et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination[J]. Nature Photonics, 2015, 9(10): 679-686.

【9】Filip M R, Eperon G E, Snaith H J, et al. Steric engineering of metal-halide perovskites with tunable optical band gaps[J]. Nature Communications, 2014, 5: 5757.

【10】Lian Z, Yan Q, Lv Q, et al. High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal[J]. Scientific Reports, 2015, 5: 16563.

【11】Hu X, Zhang X, Liang L, et al. High-performance flexible broadband photodetector based on organolead halide perovskite[J]. Advanced Functional Materials, 2014, 24(46): 7373-7380.

【12】Xia H R, Li J, Sun W T, et al. Organohalide lead perovskite based photodetectors with much enhanced performance[J]. Chemical Communications, 2014, 50(89): 13695-13697.

【13】Zhang Y, Du J, Wu X, et al. Ultrasensitive photodetectors based on island-structured CH3NH3PbI3 thin films[J]. ACS Applied Materials & Interfaces, 2015, 7(39): 21634-21638.

【14】Liu C, Wang K, Du P, et al. Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters[J]. Nanoscale, 2015, 7(39): 16460-16469.

【15】Liu C, Wang K, Yi C, et al. Ultrasensitive solution-processed perovskite hybrid photodetectors[J]. Journal of Materials Chemistry C, 2015, 3(26): 6600-6606.

【16】Zhao F Y, Xu K, Luo X, et al. Ultrasensitivity broadband photodetectors based on perovskite: research on film crystallization and electrode optimization[J]. Organic Electronics, 2017, 46: 35-43.

【17】Liu Y, Sun J, Yang Z, et al. 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors[J]. Advanced Optical Materials, 2016, 4(11): 1829-1837.

【18】Sun Z H, Zeb A R, Liu S J, et al. Exploring a lead-free semiconducting hybrid ferroelectric with a zero-dimensional perovskite-like structure[J]. Angewandte Chemie - International Edition, 2016, 55(39): 11854-11858.

【19】Zhang Y, Liu Y, Li Y, et al. Perovskite CH3NH3Pb(BrxI1-x)3 single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications[J]. Journal of Materials Chemistry C, 2016, 4(39): 9172-9178.

【20】Fang H, Li Q, Ding J, et al. A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator[J]. Journal of Materials Chemistry C, 2016, 4(3): 630-636.

【21】Ding J, Fang H, Lian Z, et al. A self-powered photodetector based on a CH3NH3PbI3 single crystal with asymmetric electrodes[J]. CrystEngComm, 2016, 18(23): 4405-4411.

【22】Lin Q, Armin A, Burn P L, et al. Near infrared photodetectors based on sub-gap absorption in organohalide perovskite single crystals[J]. Laser & Photonics Reviews, 2016, 10(6): 1047-1053.

【23】Shewmon N T, Yu H, Constantinou I, et al. Formation of perovskite heterostructures by ion exchange[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 33273-33279.

【24】Liu Y, Zhang Y, Yang Z, et al. Thinness- and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices[J]. Advanced Materials, 2016, 28(41): 9204-9209.

【25】Han Q, Bae S-H, Sun P, et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties[J]. Advanced Materials, 2016, 28(11): 2253-2258.

【26】Huo C X, Wang Z M, Li X M, et al. Low-dimensional metal halide perovskites: a kind of microcavity laser materials[J]. Chinese Journal of Lasers, 2017, 44(7): 0703008.
霍成学, 王子明, 李晓明, 等. 低维金属卤化物钙钛矿: 一种微腔激光材料[J]. 中国激光, 2017, 44(7): 0703008.

【27】Gao L, Zeng K, Guo J, et al. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity[J]. Nano Letters, 2016, 16(12): 7446-7454.

【28】Zhuo S, Zhang J, Shi Y, et al. Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors[J]. Angewandte Chemie - International Edition, 2015, 54(19): 5693-5696.

【29】Deng W, Huang L, Xu X, et al. Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement[J]. Nano Letters, 2017, 17(4): 2482-2489.

【30】Deng W, Zhang X, Huang L, et al. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability[J]. Advanced Materials, 2016, 28(11): 2201-2208.

【31】Horvath E, Spina M, Szekrenyes Z, et al. Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization[J]. Nano Letters, 2014, 14(12): 6761-6766.

【32】Deng H, Dong D, Qiao K, et al. Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices[J]. Nanoscale, 2015, 7(9): 4163-4170.

【33】Gao T, Zhang Q, Chen J N, et al. Performance-enhancing broadband and flexible photodetectors based on perovskite/ZnO-nanowire hybrid structures[J]. Advanced Optical Materials, 2017, 5(12): 1700206.

【34】Niu L, Zeng Q, Shi J, et al. Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal[J]. Advanced Functional Materials, 2016, 26(29): 5263-5270.

【35】Liu X H, Yu D J, Cao F, et al. Low-voltage photodetectors with high responsivity based on solution-processed micrometer-scale all-inorganic perovskite nanoplatelets[J]. Small, 2017, 13(25): 1700364.

【36】Song J, Xu L, Li J, et al. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices[J]. Advanced Materials, 2016, 28(24): 4861-4869.

【37】Qin X, Yao Y, Dong H, et al. Perovskite photodetectors based on CH3NH3PbI3 single crystals[J]. Chemistry - An Asian Journal, 2016, 11(19): 2675-2679.

【38】Tan Z, Wu Y, Hong H, et al. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector[J]. Journal of the American Chemical Society, 2016, 138(51): 16612-16615.

【39】Hu Q, Wu H, Sun J, et al. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading[J]. Nanoscale, 2016, 8(9): 5350-5357.

【40】Ashley M J, O′Brien M N, Hedderick K R, et al. Templated synthesis of uniform perovskite nanowire arrays[J]. Journal of the American Chemical Society, 2016, 138(32): 10096-10099.

【41】You J, Meng L, Song T-B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J]. Nature Nanotechnology, 2016, 11(1): 75-81.

【42】Kwon K C, Hong K, Van Le Q, et al. Inhibition of ion migration for reliable operation of organolead halide perovskite-based metal/semiconductor/metal broadband photodetectors[J]. Advanced Functional Materials, 2016, 26(23): 4213-4222.

【43】Guo Y, Liu C, Tanaka H, et al. Air-stable and solution-processable perovskite photodetectors for solar-blind UV and visible light[J]. Journal of Physical Chemistry Letters, 2015, 6(3): 535-539.

【44】Slayney A H, Smaha R W, Smith I C, et al. Chemical approaches to addressing the instability and toxicity of lead-halide perovskite absorbers[J]. Inorganic Chemistry, 2017, 56(1): 46-55.

【45】Waleed A, Tavakoli M M, Gu L, et al. Lead-free perovskite nanowire array photodetectors with drastically improved stability in nanoengineering templates[J]. Nano Letters, 2017, 17(1): 523-530.

引用该论文

Liu Yanzhen,Cui Yanxia. MAPbI3 Perovskite Nanowire Photodetectors[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102301

刘艳珍,崔艳霞. MAPbI3钙钛矿纳米线光电探测器[J]. 激光与光电子学进展, 2018, 55(10): 102301

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF