首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:103101--1)

表面杂质诱导薄膜元件的热损伤及其统计特性分析

Thermal Damages on Thin-Film Components Induced by Surface Impurities and Its Statistic Characteristics

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于光学薄膜元件的热力学理论, 建立了强激光连续辐照下薄膜元件的热分析模型, 分析了强激光辐照下不同种类的表面杂质诱导薄膜元件的热熔融损伤和热应力损伤的过程。统计了不同口径和不同表面洁净度等级的薄膜元件上可诱导薄膜元件热损伤的杂质数量, 定量分析了杂质诱导薄膜元件热损伤的总面积, 计算了薄膜元件上热损伤的面积超过总面积的3%时所需的曝露时间。研究结果表明, 在强激光连续辐照下, 尺寸处于一定范围内的杂质会诱导薄膜元件的热熔融损伤和热应力损伤, 热损伤的方式与杂质类型密切相关。薄膜元件的口径越大、表面洁净度等级越高, 处于可诱导薄膜元件热损伤尺寸范围内的杂质数量越多。单个杂质诱导薄膜元件热应力损伤的损伤点面积比热熔融损伤的更大。

Abstract

Based on the thermodynamic theory of the optical thin-film components, the thermal analysis model of thin-film components irradiated continuously by a high-power laser is established and the processes of the melting damage and the thermal stress damage induced by different kinds of surface impurities are analyzed. The statistic number of impurities inducing thermal damages on thin-film components with different sizes and different surface cleanliness levels is shown and the total thermal damage area of thin-film components induced by impurities is analyzed quantitatively. The exposure time when the thermal damage area of thin-film components exceeds 3% of the total area is calculated as well. The research results show that, under the high-power laser continuous irradiation, the melting damage and the thermal stress damage on thin-film components can be induced by impurities with sizes within a certain range. The damage way is closely related to the impurity type. The larger the aperture and the higher the cleanliness level of thin-film components, the larger the number of impurities with sizes within a certain range where the thermal damages on thin-film components can be induced. Furthermore, the damage point area of the thermal stress damage induced by a single impurity is larger than that of the melting damage.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O484;TN248

DOI:10.3788/lop55.103101

所属栏目:薄膜

基金项目:科技部创新人才推进计划重点领域创新团队(2014RA4051)、天津市薄膜光学重点实验室开放基金课题(KJWX170620)

收稿日期:2018-05-04

修改稿日期:2018-05-06

网络出版日期:2018-05-09

作者单位    点击查看

徐娇:四川大学电子信息学院, 四川 成都 610065
钟哲强:四川大学电子信息学院, 四川 成都 610065
黄人帅:四川大学电子信息学院, 四川 成都 610065
张彬:四川大学电子信息学院, 四川 成都 610065

联系人作者:张彬(zhangbinff@sohu.com); 徐娇(Xu_jiao@163.com);

【1】Miao X X, Yuan X D, Lü H B, et al. Experimental study of laser-induced damage of optical components surface owing to particle contamination in high power laser facility[J]. Chinese Journal of Lasers, 2015, 42(6): 0602001.
苗心向, 袁晓东, 吕海兵, 等. 激光装置污染物诱导光学元件表面损伤实验研究[J]. 中国激光, 2015, 42(6): 0602001.

【2】Walker T, Guenther A, Nielsen P. Pulsed laser-induced damage to thin-film optical coatings: Part II: Theory[J]. IEEE Journal of Quantum Electronics, 1981, 17(10): 2053-2065.

【3】Walker T, Guenther A, Nielsen P. Pulsed laser-induced damage to thin-film optical coatings: Part I: Experiment[J]. IEEE Journal of Quantum Electronics, 1981, 17(10): 2041-2052.

【4】Génin F Y, Feit M D, Kozlowski M R, et al. Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles[J]. Applied Optics, 2000, 39(21): 3654-3663.

【5】Zhang L X, Zhu X B, Li F Y, et al. Laser-induced thermal damage influenced by surface defects of materials[J]. Acta Optica Sinica, 2016, 36(9): 0914001.
张龙霞, 朱晓冰, 李风雨, 等. 材料表面缺陷对激光热损伤的影响[J]. 光学学报, 2016, 36(9): 0914001.

【6】Zeng Y. Laser thermal damage research of thin films based on finite element method[D]. Xi′an: Xi′an Technological University, 2013.
曾耀. 基于有限元方法的激光薄膜热损伤研究[D]. 西安: 西安工业大学, 2013.

【7】Yang F F. Study on laser damage of optical thin film induced by inclusion absorption based on ANSYS[D]. Wuhan: Wuhan University of Technology, 2008.
杨芳芳. 基于ANSYS的杂质诱导光学薄膜激光损伤的研究[D]. 武汉: 武汉理工大学, 2008.

【8】Hao M M, Lu G G, Wang L N, et al. Study on laser damage of optical thin films on zinc-germanium diphosphide crystal induced by inclusion[J]. Chinese Journal of Lasers, 2015, 42(6): 0607001.
郝明明, 路国光, 汪丽娜, 等. 杂质诱导磷锗锌晶体光学薄膜激光损伤的研究[J]. 中国激光, 2015, 42(6): 0607001.

【9】Spyak P R, Wolfe W L. Scatter from particulate-contaminated mirrors.Part 4: Properties of scatter from dust for visible to far-infrared wavelengths[J]. Optical Engineering, 1992, 31(8): 1775-1785.

【10】Tribble A C, Boyadjian B, Davis J, et al. Contamination control engineering design guidelines for the aerospace community[J]. Proceedings of SPIE, 1996, 2864: 4-15.

【11】Chen L X, Hu X C, Zhang B, et al. Fatigue damage characteristics of deformable mirrors for wavefront correction[J]. Chinese Journal of Lasers, 2016, 43(11): 1105002.
陈丽霞, 胡小川, 张彬, 等. 波前校正变形镜的疲劳损伤特性[J]. 中国激光, 2016, 43(11): 1105002.

【12】Xu J, Chen L X, You X H, et al. Thermal stress damage of thin-film components induced by surface impurities[J]. Acta Optica Sinica, 2017, 37(6): 0614003.
徐娇, 陈丽霞, 游兴海, 等. 表面杂质诱导薄膜元件的热应力损伤[J]. 光学学报, 2017, 37(6): 0614003.

【13】Liu G T. Atmospheric dust fall and source analysis in Hohhot[D]. Hohhot: Inner Mongolia Normal University, 2008.
刘广通. 呼和浩特市大气降尘及源分析[D]. 呼和浩特: 内蒙古师范大学, 2008.

【14】Sheng X J. The simulation and experimental analysis of laser-controlled thermal stress cutting of alumina ceramic[D]. Shanghai: Shanghai Jiao Tong University, 2010.
盛晓军. 氧化铝陶瓷激光热应力切割数值仿真与实验分析[D]. 上海: 上海交通大学, 2010.

【15】Wang H X, Shen L, Li C F, et al. Analysis and experimental investigation of laser induced damage of optics[J]. Chinese Journal of Lasers, 2017, 44(3): 0302006.
王洪祥, 沈璐, 李成福, 等. 光学元件激光诱导损伤分析及实验研究[J]. 中国激光, 2017, 44(3): 0302006.

【16】Tolochko N K, Khlopkov Y V, Mozzharov S E, et al. Absorptance of powder materials suitable for laser sintering[J]. Rapid Prototyping Journal, 2000, 6(3): 155-161.

【17】Henley S J, Carey J D, Silva S R P. Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films[J]. Physical Review B, 2005, 72(19): 195408.

【18】Weber M J. Handbook ofoptical materials[M]. Boca Raton: CRC press, 2002.

【19】Huang W. Study on thin films technology for mid-far-infrared laser coatings[D]. Chengdu: Sichuan University, 2005.
黄伟. 中远红外激光薄膜技术研究[D]. 成都: 四川大学, 2005.

【20】Chopra K L, Kaur I. Thin film phenomena[M]. New York: McGraw-Hill, 1969.

【21】Zhang C J, Fu B, Zhang D Y, et al. Damage mechanisms of multiplayer films filters under continuous laser irradiation[J]. Applied Laser, 2009, 29(5): 431-434.
张翠娟, 付博, 张大勇, 等. 连续激光作用下滤光片熔坑形成机理研究[J]. 应用激光, 2009, 29(5): 431-434.

【22】Miao X X, Yuan X D, Cheng X F, et al. Thermal stress simulation of laser induced damage of fused silica by contamination on the surface[J]. Laser Technology, 2011, 35(2): 285-288.
苗心向, 袁晓东, 程晓锋, 等. 表面污染物诱导熔石英损伤的热力学数值模拟[J]. 激光技术, 2011, 35(2): 285-288.

【23】Chen L Z. The simulation and experimental research on laser induced damage of optical materials[D]. Hangzhou: Zhejiang University, 2014.
陈力子. 光学材料激光诱导损伤的模拟与实验研究[D]. 杭州: 浙江大学, 2014.

【24】Xia J J, Gong H, Cheng L, et al. CW laser induced thermal and mechanical damage in optical window materials[J]. Acta Optica Sinica, 1997, 17(1): 20-23.
夏晋军, 龚辉, 程雷, 等. 光学材料连续波激光热-力破坏效应[J]. 光学学报, 1997, 17(1): 20-23.

【25】Wang H D, Zhang T H. Research progresses on characterization and detection technology of subsurface damages in optical materials[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100003.
王华东, 张泰华. 光学材料亚表面损伤的表征与检测技术的研究进展[J]. 激光与光电子学进展, 2017, 54(10): 100003.

【26】Su J H, Lü N, Ge J M. Characteristics of plasma shock waves in laser-induced film damage[J]. Chinese Journal of Lasers, 2016, 43(12): 1203003.
苏俊宏, 吕宁, 葛锦蔓. 激光薄膜损伤中等离子体冲击波特征[J]. 中国激光, 2016, 43(12): 1203003.

【27】Hunt J S. National ignition facility performance review 1999[R]. Lawrence Livermore National Laboratory, 2000: 15013275.

引用该论文

Xu Jiao,Zhong Zheqiang,Huang Renshuai,Zhang Bin. Thermal Damages on Thin-Film Components Induced by Surface Impurities and Its Statistic Characteristics[J]. Laser & Optoelectronics Progress, 2018, 55(10): 103101

徐娇,钟哲强,黄人帅,张彬. 表面杂质诱导薄膜元件的热损伤及其统计特性分析[J]. 激光与光电子学进展, 2018, 55(10): 103101

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF