首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:102601--1)

基于4π聚焦系统提高光学捕获稳定性

Enhancement of Optical Trapping Stability Based on 4π Focusing System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光镊技术是利用高度聚焦的激光束所形成的梯度力势阱对微纳粒子进行捕获和操控的技术, 在生物、物理、化学和医学等领域有着非常广泛的应用。基于4π聚焦系统, 理论研究了径向偏振高斯光束的紧聚焦特性及其对金属微粒的辐射力, 并与传统的单透镜聚焦系统结果进行比较; 还详细讨论了不同离焦和离轴距离对光阱刚度的影响。研究结果表明, 与传统的单透镜聚焦系统相比, 4π聚焦系统通过选择合适的光学参量, 可以获得具有三维球形结构的聚焦光斑, 显著增大了横向和纵向的梯度力, 从而显著增强光镊系统捕获金属微粒的稳定性。

Abstract

Optical tweezer has become a powerful and flexible tool for trapping and manipulating the micro-nano particles through a gradient force well formed by a highly focused laser beam, and it has a wide applications in the fields of biology, physics, chemistry, and medicine. Based on the 4π focusing system, the tight focusing characteristics of the radially polarized Gaussian beam and its radiation force to the metal particles are theoretically studied and compared with the results of traditional single-lens focusing system. Furthermore, the influence of the off-focus distance and the off-axis distance on the trap stiffness is also investigated in detail. Numerical results show that a focal spot with three-dimensional and spherical structure can be obtained in the 4π focusing system via the suitable parameters. This spherical focal spot can largely enhance the transverse and longitudinal trapping forces, and consequently enhance the trapping stability of metal particles of optical tweezer system.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/lop55.102601

所属栏目:物理光学

基金项目:国家自然科学基金理论物理专项(11747065)、安徽省自然科学基金(1808085QA10)、国家级大学生创新创业训练计划(201710361092)

收稿日期:2018-07-05

修改稿日期:2018-07-16

网络出版日期:2018-07-24

作者单位    点击查看

徐华锋:安徽理工大学力学与光电物理学院, 安徽 淮南 232001
崔巍:安徽理工大学力学与光电物理学院, 安徽 淮南 232001
张洲:安徽理工大学力学与光电物理学院, 安徽 淮南 232001

联系人作者:徐华锋(xhfeng716@126.com)

【1】Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288-290.

【2】Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.

【3】Dholakia K, Reece P, Gu M. Optical micromanipulation[J]. Chemical Society Reviews, 2008, 37(1): 42-55.

【4】Ziegler F, Lim N C, Mandal S S, et al. Knotting and unknotting of a protein in single molecule experiments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(27): 7533-7538.

【5】Li S X, Chen G, Zhang Y J, et al. Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques[J]. Optics Express, 2014, 22(21): 25895-25908.

【6】Zhong M C, Wei X B, Zhou J H, et al. Trapping red blood cells in living animals using optical tweezers[J]. Nature Communications, 2013, 4: 1768.

【7】Liang Y S, Yao B L, Ma B H, et al. Holographic optical trapping and manipulation based on phase-only liquid-crystal spatial light modulator[J]. Acta Optica Sinica, 2016, 36(3): 0309001.
梁言生, 姚保利, 马百恒, 等. 基于纯相位液晶空间光调制器的全息光学捕获与微操纵[J]. 光学学报, 2016, 36(3): 0309001.

【8】Guo Z H, Liu Z T, Chen Q M, et al. Application and progress of laser shaping devices in optical tweezers[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090004.
郭志和, 刘泽田, 陈启敏, 等. 激光整形器件在光镊中的应用及进展[J]. 激光与光电子学进展, 2017, 54(9): 090004.

【9】Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

【10】Wang X L, Chen J, Li Y N, et al. Optical orbital angular momentum from the curl of polarization[J]. Physical Review Letters, 2010, 105(25): 253602.

【11】Zhang Y J, Ding B F, Suyama T. Trapping two types of particles using a double-ring-shaped radially polarized beam[J]. Physical Review A, 2010, 81(2): 023831.

【12】Huang L, Guo H L, Li J F, et al. Optical trapping of gold nanoparticles by cylindrical vector beam[J]. Optics Letters, 2012, 37(10): 1694-1696.

【13】Li M M, Yan S H, Yao B L, et al. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations[J]. Optics Express, 2016, 24(18): 20604-20612.

【14】Liu X N, Wang J M, He C J, et al. Backward focus engineering with controlled cylindrical vector beams under different numerical apertures[J]. Acta Optica Sinica, 2014, 34(1): 0114004.
刘雪宁, 王吉明, 赫崇君,等. 不同数值孔径下调控矢量光束聚焦场的反向构建[J]. 光学学报, 2014, 34(1): 0114004.

【15】Liu J, Yang Y F, He Y, et al. Flattop beam creation based on strong focusing of circularly polarized vortex beams[J]. Acta Optica Sinica, 2014, 34(5): 0526003.
刘键, 杨艳芳, 何英, 等. 基于圆偏振涡旋光束强聚焦的平顶光束的构成[J].光学学报, 2014, 34(5): 0526003.

【16】Gong H X, Jia X T, Tao J, et al. Generating of vector vortex beams based on Mach-Zender interferometer[J]. Chinese Journal of Lasers, 2018, 45(1): 0105001.
宫洪旭, 贾信庭, 陶珺, 等. 基于马赫-曾德尔干涉仪生成矢量涡旋光束[J]. 中国激光, 2018, 45(1): 0105001.

【17】Xu Q, Li J G, Wang X, et al. Scattering properties of vectorial far-field Laguerre-Gaussian beam by single spherical particle[J]. Chinese Journal of Lasers, 2018, 45(6): 0605003.
徐强, 李金刚, 王旭, 等. 拉盖尔高斯光束矢量远场单球粒子的散射特性[J]. 中国激光, 2018, 45(6):0605003.

【18】Bokor N, Davidson N. Toward a spherical spot distribution with 4π focusing of radially polarized light[J]. Optics Letters, 2004, 29(17): 1968-1970.

【19】Chen W B, Zhan Q W. Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy[J]. Optics Letters, 2009, 34(16): 2444-2446.

【20】Yan S H, Yao B L, Rupp R. Shifting the spherical focus of a 4Pi focusing system[J]. Optics Express, 2011, 19(2): 673-678.

【21】Chen Z Y, Zhao D M. 4Pi focusing of spatially modulated radially polarized vortex beams[J]. Optics Letters, 2012, 37(8): 1286-1288.

【22】Chang Q, Yang Y F, He Y, et al. Study of the focusing features of spatial amplitude and phase modulated radially polarized vortex beams in a 4pi focusing system[J]. Acta Physica Sinica, 2013,62(10): 104202.
常强, 杨艳芳, 何英, 等. 4pi聚焦系统中振幅和相位调制的径向偏振涡旋光束聚焦特性的研究[J]. 物理学报, 2013, 62(10): 104202.

【23】Cui W J, Song F, Song F F, et al. Trapping metallic particles under resonant wavelength with 4π tight focusing of radially polarized beam[J]. Optics Express, 2016, 24(18): 20062.

【24】Wang X Y, Rui G H, Gong L P, et al. Manipulation of resonant metallic nanoparticle using 4Pi focusing system[J]. Optics Express, 2016, 24(21): 24143-24152.

【25】Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A: 1959, 253(1274): 358-379.

【26】Zhang Y J, Ding B F. Magnetic field distribution of a highly focused radially-polarized light beam[J]. Optics Express, 2009, 17(24): 22235-22239.

【27】Chen G Y, Song F, Wang H T. Sharper focal spot generated by 4π tight focusing of higher-order Laguerre-Gaussian radially polarized beam[J]. Optics Letters, 2013, 38(19): 3937-3940.

【28】Zhan Q. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 2004, 12(15): 3377-3382.

【29】Zhang Y J, Suyama T, Ding B F. Longer axial trap distance and larger radial trap stiffness using a double-ring radially polarized beam[J]. Optics Letters, 2010, 35(8): 1281-1283.

引用该论文

Xu Huafeng,Cui Wei,Zhang Zhou. Enhancement of Optical Trapping Stability Based on 4π Focusing System[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102601

徐华锋,崔巍,张洲. 基于4π聚焦系统提高光学捕获稳定性[J]. 激光与光电子学进展, 2018, 55(10): 102601

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF