首页 > 论文 > 光学学报 > 38卷 > 11期(pp:1130004--1)

基于可调谐二极管激光吸收光谱的痕量水汽测量

Measurement of Trace Water Vapor Based on Tunable Diode Laser Absorption Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用可调谐二极管激光吸收光谱技术对高纯氮气中的痕量水汽进行检测。首先, 在自主设计的多次反射池中, 利用体积分数为1.007×10-3的CH4作为标准气体, 运用1654 nm附近的CH4吸收光谱, 采用三线拟合方法同时拟合3条中心频率相近(小于0.01 cm-1)、低态能级相同的吸收线, 测量得到多次反射池的精确光程; 然后,研究可调谐二极管激光吸收光谱系统中激光器干涉背景和周围空气段的吸收本底,获得可调谐二极管激光吸收光谱系统的精确本底; 最后,利用激光器波长为1854 nm的可调谐二极管激光吸收光谱系统(探测灵敏度为1.14×10-6)对高纯氮气中水汽的浓度进行测量,通过严格的背景吸收扣除以及多线Voigt线型模型拟合得到了无背景吸收的水汽光谱, 进而获得高纯氮气中水汽的体积分数。结果表明:得到的实验高纯氮气中水汽的体积分数与国家标准规定的高纯氮气中水汽的体积分数的最大偏差为10.33%。

Abstract

The tunable diode laser absorption spectroscopic technique is used for the measurement of water vapor in high purity nitrogen. Firstly, in the self-designed multiple reflectors, the accurate light path values of the multiple reflectors are measured by using the method comprising of taking CH4 with a volume fraction of 1.007×10-3 as the standard gas, the methane absorption spectrum at around 1654 nm, and the three-line simultaneous fitting of three absorption lines with the similar central frequencies (less than 0.01 cm-1) and the same low energy levels. Secondly, the laser interference background and the absorption background of ambient air in the tunable diode laser absorption spectroscopy system are studied and the accurate background of tunable diode laser absorption spectroscopy system is obtained. Finally, the water vapor concentrations in high purity nitrogen are measured by the 1854 nm tunable diode laser absorption spectroscopy system with a detection sensitivity of 1.14×10-6. Through the strict background absorption deduction, the multi-line Voigt linear model is used to fit the water vapor spectrum without background absorption to obtain the water vapor concentration in high purity nitrogen. The results show that, the obtained maximum deviation is 10.33% compared with the national standard.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433

DOI:10.3788/AOS201838.1130004

所属栏目:光谱学

基金项目:国家重点研发计划(2017YFC0804900)

收稿日期:2018-04-27

修改稿日期:2018-06-04

网络出版日期:2018-06-09

作者单位    点击查看

臧益鹏:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
聂伟:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
许振宇:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
彭于权:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
阚瑞峰:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031

联系人作者:阚瑞峰(kanruifeng@aiofm.ac.cn); 臧益鹏(ypzang@aiofm.ac.cn);

【1】Funke H H, Grissom B L, McGrew C E, et al. Techniques for the measurement of trace moisture in high-purity electronic specialty gases[J]. Review of Scientific Instruments, 2003, 74(9): 3909-3933.

【2】Maycock A C, Shine K P, Joshi M M. The temperature response to stratospheric water vapour changes[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(657): 1070-1082.

【3】Hashiguchi K, Lisak D, Cygan A, et al. Wavelength-meter controlled cavity ring-down spectroscopy: high-sensitivity detection of trace moisture in N2 at sub-ppb levels[J]. Sensors and Actuators A, 2016, 241: 152-160.

【4】Abe H, Kitano H, Matsumoto N, et al. Uncertainty analysis for trace-moisture standard realized using a magnetic suspension balance/diffusion-tube humidity generator developed at NMIJ[J]. Metrologia, 2015, 52(6): 731-740.

【5】Riangvilaikul B, Kumar S. An experimental study of a novel dew point evaporative cooling system[J]. Energy and Buildings, 2010, 42(5): 637-644.

【6】O’Keefe A, DeaconD A G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J]. Review of Scientific Instruments, 1988, 59(12): 2544-2551.

【7】Lucchesini A, Longo I, Gabbanini C, et al. Diode laser spectroscopy of methane overtone transitions[J]. Applied Optics, 1993, 32(27): 5211-5216.

【8】Li N. Research on gas detection and 2D distribution reconstruction by tunable diode laser absorption spectroscopy technique[D]. Hangzhou: Zhejiang University, 2008: 3-6.
李宁. 基于可调谐激光吸收光谱技术的气体在线检测及二维分布重建研究[D]. 杭州: 浙江大学, 2008: 3-6.

【9】Mihalcea R M, Baer D S, Hanson R K. Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows[J]. Applied Optics, 1997, 36(33): 8745-8752.

【10】Wang M M, Dai W G, Yang H N, et al. Leakage detection of vial based on tunable diode laser absorption spectroscopy[J]. Laser & Optoelectronics Progress, 2017, 54(8): 083004.
王明明, 戴伟国, 杨荟楠, 等. 基于可调谐半导体激光吸收光谱技术的西林瓶检漏方法[J]. 激光与光电子进展, 2017, 54(8): 083004.

【11】Chen B, Kang P, Li J Y, et al. Quantitative moisture measurement with a cavity ring-down spectrometer using telecom diode lasers[J]. Chinese Journal of Chemical Physics, 2015, 28(1): 6-10.

【12】Abe H, Lisak D, Cygan A, et al. Note: reliable, robust measurement system for trace moisture in gas at parts-per-trillion levels using cavity ring-down spectroscopy[J]. The Review of Scientific Instruments, 2015, 86(10): 106110.

【13】Xu D, Wu T, He X D, et al. Measurement of trace moisture based on integrated cavity at 1392 nm with high sensitivity[J]. Laser & Optoelectronics Progress, 2017, 54(6): 063001.
徐冬, 吴涛, 何兴道, 等. 基于1392 nm高灵敏度积分腔的痕量水汽测量[J]. 激光与光电子进展, 2017, 54(6): 063001.

【14】Zhou S, Han Y L, Li B C. Trace moisture measurement with 5.2 μm quantum cascade laser based continuous-wave cavity ring-down spectroscopy[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 3848-3852.
周胜, 韩艳玲, 李斌成. 5.2 μm量子级联激光器光腔衰荡光谱技术的痕量水汽检测[J]. 光谱学与光谱分析, 2016, 36(12): 3848-3852.

【15】Yang H N, Chen N, Chen J. Measurement of low-concentration water vapor based on off-axis integrated cavity absorption spectroscopy[J]. Acta Optica Sinica, 2018, 38(2): 0212005.
杨荟楠, 陈宁, 陈军. 基于离轴积分腔吸收光谱技术的低浓度水蒸气测量[J]. 光学学报, 2018, 38(2): 0212005.

【16】Kan R F, Liu W Q, Zhang Y J, et al. Infrared absorption spectrometer of monitoring ambient methane[J]. Acta Optica Sinica, 2006, 26(1): 67-70.
阚瑞峰, 刘文清, 张玉钧, 等. 基于可调谐激光吸收光谱的大气甲烷监测仪[J]. 光学学报, 2006, 26(1): 67-70.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF