首页 > 论文 > 光学学报 > 38卷 > 11期(pp:1126001--1)

基于光合电子传递速率的浮游植物初级生产力测量

Measurement of Primary Productivity of Phytoplankton Based on Photosynthetic Electron Transport Rate

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

快速、准确评估浮游植物的初级生产力对研究海洋生态环境科学及理解全球碳循环演变规律等至关重要。针对14C示踪法和黑白瓶法等传统方法表示的初级生产力存在测量周期长、操作繁琐等问题, 依据生物膜能流理论, 基于荧光动力学方法, 即通过光源诱导产生可变叶绿素荧光获得光合参数, 结合光合电子传递速率“生物-光学”模型, 对基于荧光动力学参数的光合电子传递速率的测量进行研究。通过不同胁迫条件下蛋白核小球藻的测试, 对比液相氧电极测量的光合放氧速率, 验证光合电子传递速率测量浮游植物初级生产力的有效性。结果表明:在不同浓度的二氯苯基二甲脲的胁迫下, 浮游植物的光合电子传递速率与光合放氧速率具有良好的一致性, 且二者随胁迫浓度增加而减小明显, 光合放氧速率与光合电子传递速率分别减小了71.55%和68.87%, 二者相关系数的平方达到0.934; 在不同营养盐或光照强度下胁迫培养15 d, 浮游植物的光合电子传递速率与光合放氧速率仍然具有良好的一致性, 二者相关系数的平方大于0.955。

Abstract

Rapid and accurate assessment of the primary productivity of phytoplankton is crucial to scientific research of marine ecological environment and understanding of evolution rules of global carbon cycle. The measurement period of primary productive forces represented by the 14C tracer method or the black and white bottle method is long and cumbersome. To solve the problem, we study the photosynthetic electron transfer rate according to the biofilm energy flow theory. Photosynthetic parameters are obtained by the variable chlorophyll fluorescence induced by light source, and combined with photosynthetic electron transfer rate “biological-optics”. Therefore, the measurement of photosynthetic electron transfer rate based on fluorescence kinetic parameters is studied. The chlorella pyrenoidosa is tested under different stress conditions, and the photosynthetic oxygen rate measured by the liquid phase oxygen electrode is compared to verify effectiveness of the photosynthetic electron transfer rate. The results show that under different concentrations of dichlorophenyl dimethylurea stress, the photosynthetic electron transport rate and photosynthetic oxygen release rate of phytoplankton have good consistency, and both decrease significantly with the increase of the stress concentration. The photosynthetic oxygen release rate and photosynthetic electron transport rate are reduced by 71.55% and 68.87%, respectively, and their square of correlation coefficient is 0.934. Under different nutrients or light intensity for 15 d, the photosynthetic electron transport rate and photosynthetic oxygen release rate still have good consistency, and their square of correlation coefficient is greater than 0.955.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:X826

DOI:10.3788/aos201838.1126001

所属栏目:物理光学

基金项目:国家重点研发计划项目(2016YFC1400600)、青岛海洋科学与技术国家实验室开放基金(QNLM2016ORP0312)、国家自然科学基金(31400317)、国家863计划(2014AA06A509)

收稿日期:2018-05-22

修改稿日期:2018-05-29

网络出版日期:2018-06-05

作者单位    点击查看

陈双:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
殷高方:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
赵南京:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
覃志松:桂林电子科技大学计算机与信息安全学院, 广西 桂林 541004
张小玲:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
甘婷婷:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
刘建国:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
刘文清:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031

联系人作者:赵南京(njzhao@aiofm.ac.cn); 陈双(schen@aiofm.ac.cn);

【1】Muller-Karger F E, Varela R, Thunell R, et al. The importance of continental margins in the global carbon cycle[J]. Geophysical Research Letters, 2005, 32(1): L01602.

【2】Behrenfeld M J, Randerson J T, McClain C R, et al. Biospheric primary production during an ENSO transition[J]. Science, 2001, 291(5513): 2594-2597.

【3】Pei S F, Laws E A. Does the 14C method estimate net photosynthesis? Implications from batch and continuous culture studies of marine phytoplankton[J]. Deep-Sea Research Part I, 2013, 82: 1-9.

【4】Booth C R, Kiefer D A. Method and apparatus for determining concentrations of chlorophyll and the rate of primary production in water: 4804849[P]. 1989-02-14.

【5】Suggett D J, Moore C M, Hickman A E, et al. Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state[J]. Marine Ecology Progress Series, 2009, 376: 1-19.

【6】Liu J, Chen J M, Cihlar J, et al. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data[J]. Journal of Geophysical Research, 1999, 104(27): 735-754.

【7】Kautsky H, Hirsch A. Neue versuche zur Kohl ensaure assimilation[J]. Naturwissenschaften, 1931, 19: 964.

【8】Chen J M, Liu J, Cihlar J, et al. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications[J]. Ecological Modelling, 1999, 124(2/3): 99-119.

【9】Kolber Z, Falkowski P G. Use of active fluorescence to estimate phytoplankton photosynthesis in situ[J]. Limnology and Oceanography, 1993, 38(8): 1646-1665.

【10】Chen S, Yin G F, Zhao N J, et al. Analysis of phytoplankton concentration of functional reaction centers based on fluorescence dynamics parameters[J]. Acta Optica Sinica, 2018, 38(6): 0630004.
陈双, 殷高方, 赵南京, 等. 基于荧光动力学参数的浮游植物有效光合反应中心浓度分析[J]. 光学学报, 2018, 38(6): 0630004.

【11】Qin Z S, Zhao N J, Yin G F, et al. Inversion method of plant photosynthesis parameter based on fast phase and relaxation fluorescence kinetics[J]. Acta Optica Sinica, 2017, 37(7): 0730002.
覃志松, 赵南京, 殷高方, 等. 快相与弛豫荧光动力学植物光合作用参数反演方法[J]. 光学学报, 2017, 37(7): 0730002.

引用该论文

Chen Shuang,Yin Gaofang,Zhao Nanjing,Qin Zhisong,Zhang Xiaoling,Gan Tingting,Liu Jianguo,Liu Wenqing. Measurement of Primary Productivity of Phytoplankton Based on Photosynthetic Electron Transport Rate[J]. Acta Optica Sinica, 2018, 38(11): 1126001

陈双,殷高方,赵南京,覃志松,张小玲,甘婷婷,刘建国,刘文清. 基于光合电子传递速率的浮游植物初级生产力测量[J]. 光学学报, 2018, 38(11): 1126001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF