首页 > 论文 > 激光与光电子学进展 > 55卷 > 11期(pp:110602--1)

基于相干检测数字光频梳的快速BOTDA传感系统

Fast BOTDA Sensing System Based on Coherent Detecting Digital Optical Frequency Comb

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对传统布里渊光时域分析(BOTDA)技术测量速度慢的问题,提出并设计了一个基于相干检测数字光频梳(DOFC)的快速BOTDA传感系统。利用相干检测DOFC,在不扫频的情况下重构传感所需的布里渊增益谱(BGS)和相位谱(BPS);结合BGS和BPS,传感光纤的布里渊频移分布可在不作任何平均处理的情况下快速获得,极大地缩短了BOTDA传感系统的响应时间。实验测试可知,传感系统在10 km传感光纤上的响应时间为0.1 ms,其温度和应变的探测精度分别达到了1.6 ℃和44 με,相应的温度和应力测量最大偏差分别为0.3 ℃和小于10 με。实验结果表明,基于相干检测DOFC的BOTDA传感系统可快速实现温度和应力的长距离、高精度传感。

Abstract

Aiming at the slow measurement speed problem for the conventional Brillouin optical time domain analysis (BOTDA) technology, a fast BOTDA sensing system based on the coherent detecting digital optical frequency comb (DOFC) is proposed and designed. With the coherent detecting DOFC, the Brillouin gain spectrum (BGS) and the Brillouin phase spectrum (BPS) needed for sensing can be reconstructed without any frequency sweeping. Owe to the BGS and BPS, the Brillouin frequency shift distribution of the sensing fiber can be obtained without any averaging process, and thus the response time of the BOTDA sensing system can be greatly shortened. Through the experimental tests, it is can been seen that the response time of the sensing system over 10 km sensing fiber is 0.1 ms, and the detection accuracies are 1.6 ℃ for temperature and 44 με for strain, respectively. The corresponding maximum measurement deviations of this sensing system are about 0.3 ℃ for temperature and less than 10 με for strain. The experimental results show that the BOTDA sensing system based on the coherent detecting DOFC can be used to realize a fast, long distance and high accuracy sensing of temperature and strain.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP212.1

DOI:10.3788/lop55.110602

所属栏目:光纤光学与光通信

基金项目:国家863计划(2015AA015501,20615010)、国家自然科学基金(61705088)

收稿日期:2018-04-25

修改稿日期:2018-05-19

网络出版日期:2018-05-29

作者单位    点击查看

梁梓豪:暨南大学信息科学技术学院电子工程系, 广东 广州 510632
高社成:暨南大学信息科学技术学院电子工程系, 广东 广州 510632
冯元华:暨南大学信息科学技术学院电子工程系, 广东 广州 510632
刘伟平:暨南大学信息科学技术学院电子工程系, 广东 广州 510632

联系人作者:高社成(gaosc825@163.com)

【1】Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639.

【2】Motil A, Bergman A, Tur M. State of the art of Brillouin fiber-optic distributed sensing(INVITED)[J]. Optics & Laser Technology, 2016, 78: 81-103.

【3】Zhang L X, Li Y Q, An Q, et al. Temperature sensing technology based on Rayleigh Brillouin optical time domain analysis with pulse coding[J]. Acta Optica Sinica, 2017, 37(11): 1106004.
张立欣, 李永倩, 安琪, 等. 脉冲编码瑞利布里渊光时域分析温度传感技术[J]. 光学学报, 2017, 37(11): 1106004.

【4】Luo Y, Yan L S, Shao L Y, et al. Golay-differential pulse hybrid coding technology based on Brillouin optical time domain analysis sensors[J]. Acta Optica Sinica, 2016, 36(8): 0806002.
罗源, 闫连山, 邵理阳, 等. 基于布里渊光时域分析传感系统的格雷-差分脉冲混合编码技术[J]. 光学学报, 2016, 36(8): 0806002.

【5】Shang Q F, Hu Y T, Liu W. Feature extraction of Brillouin scattering spectrum based on cross-correlation convolution and high-order centroid calculation[J]. Chinese Journal of Lasers, 2017, 44(11): 1106011.
尚秋峰, 胡雨婷, 刘薇. 基于互相关卷积与高阶矩质心计算的布里渊散射谱特征提取[J]. 中国激光, 2017, 44(11): 1106011.

【6】Bernini R, Minardo A, Zeni L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering[J]. Optics Letters, 2009, 34(17): 2613-2615.

【7】Sovran I, Motil A, Tur M. Frequency-scanning BOTDA with ultimately fast acquisition speed[J]. IEEE Photonics Technology Letters, 2015, 27(13): 1426-1429.

【8】Minardo A, Catalano E, Zeni L. Cost-effective method for fast Brillouin optical time-domain analysis[J]. Optics Express, 2016, 24(22): 25424-25431.

【9】Kim Y H, Song K Y. Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification[J]. Optics Express, 2017, 25(13): 14098-14105.

【10】Peled Y, Motil A, Yaron L, et al. Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile[J]. Optics Express, 2011, 19(21): 19845- 19854.

【11】Hu J H, Xia L, Yang L, et al. Strain-induced vibration and temperature sensing BOTDA system combined frequency sweeping and slope-assisted techniques[J]. Optics Express, 2016, 24(12): 13610-13620.

【12】Zhou D W, Dong Y K, Wang B Z, et al. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements[J]. Optics Express, 2017, 25(3): 1889-1902.

【13】Voskoboinik A, Wang J, Shamee B, et al. SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation[J]. Journal of Lightwave Technology, 2011, 29(11): 1729-1735.

【14】Voskoboinik A, Yilmaz O F, Willner A W, et al. Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA)[J]. Optics Express, 2011, 19(26): B842-B847.

【15】Jin C, Guo N, Feng Y H, et al. Scanning-free BOTDA based on ultra-fine digital optical frequency comb[J]. Optics Express, 2015, 23(4): 5277-5284.

【16】Zhao C, Tang M, Wang L, et al. BOTDA using channel estimation with direct-detection optical OFDM technique[J]. Optics Express, 2017, 25(11): 12698-12709.

【17】Fang J, Xu P B, Dong Y K, et al. Single-shot distributed Brillouin optical time domain analyzer[J]. Optics Express, 2017, 25(13): 15188-15198.

【18】Urricelqui J, Zornoza A, Sagues M, et al. Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation[J]. Optics Express, 2012, 20(24): 26942-26949.

【19】Lopez-Gil A, Soto M A, Angulo-Vinuesa X, et al. Evaluation of the accuracy of BOTDA systems based on the phase spectral response[J]. Optics Express, 2016, 24(15): 17200-17214.

【20】Urricelqui J, Lopez-Fernandino F, Sagues M, et al. Polarization diversity scheme for BOTDA sensors based on a double orthogonal pump interaction[J]. Journal of Lightwave Technology, 2015, 33(12): 2633-2638.

【21】Li Y Q, An Q, Li X J, et al. Optical fiber sensing technology based on loss vector Brillouin optical time domain analysis[J]. Acta Optica Sinica, 2016, 36(9): 0906004.
李永倩, 安琪, 李晓娟, 等. 损耗型矢量布里渊光时域分析光纤传感技术[J]. 光学学报, 2016, 36(9): 0906004.

引用该论文

Liang Zihao,Gao Shecheng,Feng Yuanhua,Liu Weiping. Fast BOTDA Sensing System Based on Coherent Detecting Digital Optical Frequency Comb[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110602

梁梓豪,高社成,冯元华,刘伟平. 基于相干检测数字光频梳的快速BOTDA传感系统[J]. 激光与光电子学进展, 2018, 55(11): 110602

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF