首页 > 论文 > 激光与光电子学进展 > 55卷 > 11期(pp:111403--1)

激光熔覆2205双相不锈钢/TiC复合涂层的显微组织与性能

Microstructure and Properties of Laser Cladded 2205 Dual-Phase Stainless Steel/TiC Composite Coatings

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用激光熔覆技术,在16Mn钢表面制备了2205双相不锈钢/TiC复合涂层,研究了TiC含量对熔覆层微观组织、显微硬度及摩擦磨损性能的影响,并讨论了熔覆层中TiC的熔解、析出行为与熔覆层性能之间的关系。结果表明,随着TiC含量的增大,熔覆层的稀释率逐渐增大。熔覆过程中TiC发生了熔解及析出现象。随着TiC含量的增大,熔覆层的显微硬度逐渐增大。当TiC质量分数达到15%时,熔覆层的显微硬度最大值可达612 HV,该熔覆层的磨损失重最小。

Abstract

The laser cladding technique is adopted for the fabrication of 2205 dual-phase stainless steel/TiC composite coating on the 16Mn steel surface. The effect of TiC content on the microstructure, microhardness and frictional wear properties of cladding layer is investigated and the relationship between the melting and precipitation behaviors of TiC in the cladding layer and the properties of cladding layer is also discussed. The results show that the dilution rate of cladding layer increases gradually with the increase of TiC content. Moreover, the TiC particles melt and precipitate during the laser cladding process. The microhardness of cladding layer increases gradually as the TiC content increases, and the highest microhardness of cladding layer is up to 612 HV when the TiC mass fraction is 15%. Simultaneously, the wear weight loss of cladding layer is the lowest.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG174.44

DOI:10.3788/lop55.111403

所属栏目:激光器与激光光学

基金项目:国家重点研发计划(2017YFB0306100)

收稿日期:2018-04-27

修改稿日期:2018-05-21

网络出版日期:2018-06-04

作者单位    点击查看

靳鸣:北京工业大学材料科学与工程学院, 北京 100124
贺定勇:北京工业大学材料科学与工程学院, 北京 100124北京市生态环境材料及其评价工程技术研究中心, 北京 100124
王曾洁:北京市生态环境材料及其评价工程技术研究中心, 北京 100124
周正:北京工业大学材料科学与工程学院, 北京 100124北京市生态环境材料及其评价工程技术研究中心, 北京 100124
王国红:北京市生态环境材料及其评价工程技术研究中心, 北京 100124
李小璇:北京工业大学材料科学与工程学院, 北京 100124

联系人作者:贺定勇(dyhe@bjut.edu.cn); 靳鸣(S201609005@emails.bjut.edu.cn);

【1】Zhong M L, Liu W J. Leading areas and hot topics on global laser materials processing research[J]. Chinese Journal of Lasers, 2008, 35(11): 1653-1659.
钟敏霖, 刘文今. 国际激光材料加工研究的主导领域与热点[J]. 中国激光, 2008, 35(11): 1653-1659.

【2】Abboud J H, West D R F. Ceramic-metal composites produced by laser surface treatment[J]. Materials Science and Technology, 1989, 5(7): 725-728.

【3】Chang J, Wang F. Microstructure of Fe-based alloy coating by plasma cladding process on Q235[J]. Hot Working Technology, 2008, 37(23): 103-104,108.
常婕, 王峰. Q235钢等离子弧熔覆铁基合金涂层的组织分析[J]. 热加工工艺, 2008, 37(23): 103-104, 108.

【4】Cui Z Q, Wang W X, Cao G G, et al. Microstructure and properties of Fe-based alloy and B4C ceramics composite coating on low carbon steel by laser cladding[J]. Transactions of Materials and Heat Treatment, 2011, 32(3): 134-138.
崔泽琴, 王文先, 曹国光, 等. 碳钢表面激光熔覆铁基B4C陶瓷涂层的组织与性能[J]. 材料热处理学报, 2011, 32(3): 134-138.

【5】Li S, Xu G H, Han L F, et al. Application status and research development of Fe-based alloy material for laser cladding[J]. Hot Working Technology, 2011, 40(6): 112-114, 117.
李胜, 许光辉, 韩立发, 等. 激光熔覆用铁基合金材料的使用现状和研制进展[J]. 热加工工艺, 2011, 40(6): 112-114,117.

【6】Zan S P, Jiao J K, Zhang W W. Study on laser cladding process of 316L stainless steel powder[J]. Laser & Optoelectronics Progress, 2016, 53(6): 061406.
昝少平, 焦俊科, 张文武. 316L不锈钢粉末激光熔覆工艺研究[J]. 激光与光电子学进展, 2016, 53(6): 061406.

【7】Fan J W, He C C, Du C F, et al. Effects of aging treatment at 590 ℃ on the phase structure and hardness of 2205 duplex stainless steel[J]. Shanghai Nonferrous Metals, 2011, 32(2): 61-65.
范君伟, 何晨冲, 杜春风,等. 590 ℃时效处理对2205双相不锈钢组织及硬度的影响[J]. 上海有色金属, 2011, 32(2): 61-65.

【8】Momeni A, Dehghani K, Zhang X X. Mechanical and microstructural analysis of 2205 duplex stainless steel under hot working condition[J]. Journal of Materials Science, 2012,47(6): 2966-2974.

【9】Zeng X G, Luo H, Wu C. The effect of heat treatment process on the corrosion resistance of 2205 duplex stainless steel[J]. Heavy Casting and Forging, 2009(4): 12-15.
曾宪光, 罗宏, 吴灿. 热处理工艺对2205双相不锈钢耐蚀性能的影响[J]. 大型铸锻件, 2009(4): 12-15.

【10】Chen L, Ma X C, Liu X, et al. Processing map for hot working characteristics of a wrought 2205 duplex stainless steel[J]. Materials & Design, 2011, 32(3): 1292-1297.

【11】Lin S J, Xiong W H, Wang S Y, et al. Effect of reinforcing particles content on properties of TiC/316L composites[J]. Materials Science and Engineering of Powder Metallurgy, 2013,18(3): 373-378.
蔺绍江, 熊惟皓, 王赛玉, 等. 增强体含量对TiC/316L复合材料性能的影响[J]. 粉末冶金材料科学与工程, 2013, 18(3): 373-378.

【12】Akhtar F, Guo S J. Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites[J]. Materials Characterization, 2008, 59(1): 84-90.

【13】Duan X X, Gao S Y, Gu Y F, et al. Study on reinforcement mechanism and frictional wear properties of 316L+SiC mixed layer deposited by laser cladding[J]. Chinese Journal of Lasers, 2016, 43(1): 0103004.
段晓溪, 高士友, 顾勇飞, 等. 激光熔覆316L+SiC的强化机制和摩擦磨损性能研究[J]. 中国激光, 2016, 43(1): 0103004.

【14】Xue M P, Han B, Wang Y, et al. Microstructures and corrosion resistance properties of Ni-based WC/Cr3C2 coating prepared by laser cladding[J]. Laser & Optoelectronics Progress, 2011, 48(9): 091403.
薛敏鹏, 韩彬, 王勇, 等. 激光熔覆Ni基WC/Cr3C2涂层显微组织和耐蚀性研究[J]. 激光与光电子学进展, 2011, 48(9): 091403.

【15】Wang Z W, Zhang H, Zhao C. Study on microstructure and properties of TiC-Fe45-based composite coating by argon tungsten-arc cladding[J]. Surface Technology, 2014, 43(5): 51-54, 75.
王泽旺, 张寰, 赵程. 氩弧熔覆TiC颗粒增强Fe基涂层组织性能研究[J]. 表面技术, 2014, 43(5): 51-54, 75.

【16】Qiao H, Li Q T, Fu H G, et al. Microstructure and micro-hardness of in situ synthesized TiC particles reinforced Fe-based alloy composite coating by laser cladding[J]. Materialwissenschaft und Werkstofftechnik, 2014, 45(2): 85-90.

【17】Lee J M, Euh K, Oh J C, et al. Microstructure and hardness improvement of TiC/stainless steel surface composites fabricated by high-energy electron beam irradiation[J]. Materials Science and Engineering: A, 2002, 323(1/2): 251-259.

【18】He C L, Chen S K, Zhou Z H, et al. Research situation and application prospects of laser cladding metal-based titanium carbide reinforced coating[J]. Hot Working Technology, 2013, 42(12): 7-10.
贺长林, 陈少克, 周中河, 等. 激光熔覆金属基碳化钛强化涂层的研究现状及应用前景[J]. 热加工工艺, 2013, 42(12): 7-10.

【19】Zhang X J, Fang J, Shi H Z, et al. Study of laser cladding Fe-based alloy/ceramic TiC layer on 20 steel[J]. Hot Working Technology, 1997(2): 24-26.
张细菊, 方军, 史华忠, 等. 钢表面激光熔覆Fe基TiC陶瓷涂层的研究[J]. 热加工工艺, 1997(2): 24-26.

【20】Huang Z F, Zhang C, Tang Q H, et al. Effects of WC particles on the microstructure and hardness of FeCoCrNiCu high-entropy alloy coating prepared by laser cladding[J]. China Surface Engineering, 2013, 26(1): 13-19.
黄祖凤, 张冲, 唐群华, 等. WC颗粒对激光熔覆FeCoCrNiCu高熵合金涂层组织与硬度的影响[J]. 中国表面工程, 2013, 26(1): 13-19.

【21】Wang X H, Qu S Y,Du B S, et al. Effect of molybdenum on microstructure and wear properties of Fe-Ti-Mo-C laser clad coatings[J]. Materials Science and Technology, 2011, 27(7): 1222-1228.

【22】Tjong S C, Lau K C. Abrasion resistance of stainless-steel composites reinforced with hard TiB2 particles[J]. Composites Science and Technology, 2000, 60(8): 1141-1146.

引用该论文

Jin Ming,He Dingyong,Wang Zengjie,Zhou Zheng,Wang Guohong,Li Xiaoxuan. Microstructure and Properties of Laser Cladded 2205 Dual-Phase Stainless Steel/TiC Composite Coatings[J]. Laser & Optoelectronics Progress, 2018, 55(11): 111403

靳鸣,贺定勇,王曾洁,周正,王国红,李小璇. 激光熔覆2205双相不锈钢/TiC复合涂层的显微组织与性能[J]. 激光与光电子学进展, 2018, 55(11): 111403

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF