首页 > 论文 > 激光与光电子学进展 > 55卷 > 11期(pp:110901--1)

一种无透镜傅里叶变换数字全息的散斑降噪方法

A Speckle Noise Reduction Method for Lensless Fourier Transform Digital Holography

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

散斑噪声的存在严重降低了数字全息技术再现像的信噪比和空间分辨率。在无透镜傅里叶变换数字全息中,通过对电荷耦合器件(CCD)记录的干涉图进行一次傅里叶变换,就可以重建物光场。根据干涉图上不同的像素点对再现像中散斑噪声强度分布贡献不同的特点,提出了一种新的降噪方法。该方法将CCD输出的干涉图划分为多个区域,并调换各个区域的位置,得到多幅互异的新干涉图,然后将所有新干涉图进行再现处理;对再现像进行叠加平均,就可以得到一幅散斑噪声强度更低的再现像,其等效视数明显提高。相比于空域掩模法,所提方法的处理时间缩短了80%左右,且再现像的边缘保持系数提高了1倍。

Abstract

The presence of the speckle noise greatly reduces the signal-to-noise ratio and spatial resolution of the digital holographic reconstructed image. In the lensless Fourier transform digital holography, the object light field can be reconstructed by only one step of Fourier transform on the interferogram recorded by the charge coupled device (CCD). A new speckle reduction method is proposed based on the principle that each pixel in the hologram contributes differently to the distribution of the speckle noise intensity in the reconstructed image in this paper. With this method, we divide the interferogram outputted by the CCD into several regions and exchange the positions of the regions. Many different new reconstruction interferograms are obtained, and then all new interferograms are reconstructed. Then, the reconstructed image with lower speckle noise intensity can be obtained by superimposing and averaging all of the reconstructed images, and the equivalent number of looks improves significantly. Compared with the spatial domain mask method, the proposed method reduces the processing time by 80%, and increases the edge preservation index of the reconstructed image by one times.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O438.1

DOI:10.3788/lop55.110901

所属栏目:全息

基金项目:国家自然科学基金(61675050)、广东省科技计划项目(2015B010114007)

收稿日期:2018-04-27

修改稿日期:2018-05-27

网络出版日期:2018-06-06

作者单位    点击查看

梁明大:广东工业大学物理与光电工程学院, 广东 广州 510006
陈丽:广东工业大学物理与光电工程学院, 广东 广州 510006
林伟涛:广东工业大学物理与光电工程学院, 广东 广州 510006
陈永昊:广东工业大学物理与光电工程学院, 广东 广州 510006

联系人作者:陈丽(ggchenli@gdut.edu.cn); 梁明大(liangmingda088@163.com);

【1】Jiang Z L, Veetil S P, Cheng J, et al. High-resolution digital holography with the aid of coherent diffraction imaging[J]. Optics Express, 2015, 23(16): 20916-20925.

【2】Darakis E, Khanam T, Rajendran A, et al. Microparticle characterization using digital holography[J]. Chemical Engineering Science, 2010, 65(2): 1037-1044.

【3】Zeng Y N, Lu J S, Liu Y, et al. Three-dimensional displacement tracking technique of particle based on digital holographic microscopy[J]. Chinese Journal of Lasers, 2017, 44(12): 1204001.
曾雅楠, 卢钧胜, 刘源, 等. 基于数字全息显微的微粒三维位移跟踪测量技术[J]. 中国激光, 2017, 44(12): 1204001.

【4】Nguyen T, Bui V, Lam V, et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 2017, 25(13): 15043-15057.

【5】Abuturab M R. Multiple information encryption by user-image-based gyrator transform hologram[J]. Optics and Lasers in Engineering, 2017, 92: 76-84.

【6】Wu W M, Chen J Z. Multiple watermarking method based on double random phase encryption system with double quick response code [J]. Laser & Optoelectronics Progress, 2017, 54(12): 120901.
吴为民, 陈家祯. 基于双快速反应码双随机相位加密系统的多重水印方法[J]. 激光与光电子学进展, 2017, 54(12): 120901.

【7】Kim S, Lee S J. Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry[J]. Experiments in Fluids, 2008, 46(2): 255-264.

【8】Chang X Y, Zeng Y N, Lei H, et al. Three-dimensional position measurement method with nanoscale precision for overlapped particles in liquid[J]. Acta Optica Sinica, 2017, 37(8): 0812002.
常新宇, 曾雅楠, 雷海, 等. 液态中交叠微球的三维纳米级位置测量方法[J]. 光学学报, 2017, 37(8): 0812002.

【9】Wan W Q, Qiao W, Huang W B, et al. Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD[J]. Optics Express, 2017, 25(2): 1114-1122.

【10】Liu N, Yang C, Cao H J. Noise suppression of the reconstruction of infrared digital holography based on pyramid-based bilateral filter[J]. Infrared Physics & Technology, 2017, 85: 352-358.

【11】Uzan A, Rivenson Y, Stern A. Speckle denoising in digital holography by nonlocal means filtering[J]. Applied Optics, 2013, 52(1): 195-200.

【12】Cui S S, Li Q. A comparison of filtering techniques on denoising terahertz coaxial digital holography image[J]. Proceedings of SPIE, 2016, 10157: 101571R.

【13】Kemper B, Stürwald S, Remmersmann C, et al. Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces[J]. Optics and Lasers in Engineering, 2008, 46(7): 499-507.

【14】Mori Y, Nomura T. Speckle reduction in hologram generation based on spherical waves synthesis using low-coherence digital holography[J]. Journal of Display Technology, 2015, 11(10): 867-872.

【15】Huang H C, Rong L, Wang D Y, et al. Synthetic aperture in terahertz in-line digital holography for resolution enhancement[J]. Applied Optics, 2016, 55(3): A43.

【16】Zhong L Y, Zhang Y M, Lü X X. Synthetic aperture digital holography and multiple reference wave synthetic aperture digital holography[J]. Acta Photonica Sinica, 2004, 33(11): 1343-1347.
钟丽云, 张以谟, 吕晓旭.合成孔径数字全息的分析模拟及多参考光合成孔径数字全息[J]. 光子学报, 2004, 33(11): 1343-1347.

【17】Mori Y, Fukuoka T, Nomura T. Extended focused imaging in digital holography by spatial-domain mask method[J]. Journal of Optics, 2015, 17(12): 125706.

【18】Fukuoka T, Mori Y, Nomura T. Speckle reduction by spatial-domain mask in digital holography[J]. Journal of Display Technology, 2016, 12(4): 315-322.

【19】Chen J B, Su X Y. Principles and applications of optical information technology[M]. Beijing: Higher Education Press, 2009: 143-144.
陈家璧, 苏显渝. 光学信息技术原理及应用[M]. 北京: 高等教育出版社, 2009: 143-144.

【20】Zhang W, Sun R H, Zhang X C. Noise removal of SAR image based on improved wavelet soft-thresholding method[J]. Remote Sensing Information, 2004, 19(4): 4-6.
张微, 孙蓉桦, 章孝灿. 基于改进的小波软阈值法的SAR图像去噪[J]. 遥感信息, 2004, 19(4): 4-6.

引用该论文

Liang Mingda,Chen Li,Lin Weitao,Chen Yonghao. A Speckle Noise Reduction Method for Lensless Fourier Transform Digital Holography[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110901

梁明大,陈丽,林伟涛,陈永昊. 一种无透镜傅里叶变换数字全息的散斑降噪方法[J]. 激光与光电子学进展, 2018, 55(11): 110901

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF