首页 > 论文 > 激光与光电子学进展 > 55卷 > 11期(pp:110605--1)

基于光纤布拉格光栅的双壁模型管桩轴力测试

Test on Axial Force of Double-Walled Mode Pipe Pile Based on Fiber Bragg Grating

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种利用光纤布拉格光栅(FBG)测试双壁模型管桩桩身轴力的方法,探讨模型管桩应变变化与光纤光栅中心波长稳定性和漂移的关系。FBG传感器封装在模型管桩外管加工槽体内,模型管桩内管采取直接粘贴光纤光栅的方法,将应变片分别粘贴在模型管桩内、外管光纤光栅同一位置。对模型管桩施加竖向压力后产生的应变进行测试,并将FBG传感器及应变片的测试结果与理论公式进行对比分析,发现两者存在误差,但在测试要求范围内。外管施加5 kN竖向荷载时,光纤光栅测得的最大应变为59.2 με,相对误差为4.9%;内管施加5 kN竖向荷载时,光纤光栅测得的最大应变为122.3 με,相对误差为7.2%,均满足工程测试要求。

Abstract

The detecting method of measuring axial force of double-walled model pipe pile by fiber Bragg grating (FBG) is proposed. The relationship between the strain change of the model pipe pile and the stability and drift of the central wavelength of the fiber grating is discussed. FBG sensor is packaged in the external tube of the mode pipe pile, and is attached on the internal tube of the mode pipe pile. The strain gauges are stuck on the same position of fiber grating of external tube and internal tube of mode pipe pile, respectively. After the vertical stress is exerted on the model pipe pile, the strain of the model pipe pile is tested, and the test results of the FBG sensor and the strain gauge are compared with the theoretical formula. It is found that there are errors between them, but within test requirements. When the vertical load of 5 kN is applied to the external tube, the maximum strain measured by the FBG is 59.2 με and the relative error is 4.9%. The maximum strain of internal tube measured by the FBG is 122.3 με with a relative load of 5 kN, and the relative error is 7.2%. These errors are allowed for the engineering test requirements.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/lop55.110605

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(41502304,41772318,51778312)、山东省自然科学基金(ZR2016EEP06)、山东省重点研发计划(2017GSF20107,2018GSF117010)

收稿日期:2018-04-28

修改稿日期:2018-05-09

网络出版日期:2018-06-06

作者单位    点击查看

王永洪:青岛理工大学土木工程学院, 山东 青岛 266033青岛理工大学蓝色经济区工程建设与安全协同创新中心, 山东 青岛 266033
刘俊伟:青岛理工大学土木工程学院, 山东 青岛 266033青岛理工大学蓝色经济区工程建设与安全协同创新中心, 山东 青岛 266033
张明义:青岛理工大学土木工程学院, 山东 青岛 266033青岛理工大学蓝色经济区工程建设与安全协同创新中心, 山东 青岛 266033
张春巍:青岛理工大学土木工程学院, 山东 青岛 266033青岛理工大学蓝色经济区工程建设与安全协同创新中心, 山东 青岛 266033
王明明:青岛理工大学土木工程学院, 山东 青岛 266033
赵国晓:青岛理工大学土木工程学院, 山东 青岛 266033

联系人作者:刘俊伟(zjuljw@126.com)

【1】Paik K, Salgado R, Lee J, et al. Behavior of open-and closed-ended piles driven into sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(4): 296-306.

【2】Iskander M. Behavior of pipe piles in sand: plugging & pore-water pressure generation during installation and loading[M]. Springer Science & Business Media, 2011.

【3】Zhang J X, Wu D Y. Research on interaction between resistance at pile and lateral resistance of pile[J]. Rock and Soil Mechanics, 2008, 29(2): 541-544.
张建新, 吴东云. 桩端阻力与桩侧阻力相互作用研究[J]. 岩土力学, 2008, 29(2): 541-544.

【4】Zhou J, Li K X, Guo J J, et al. Laboratory model tests and particle flow code numerical simulation of pile tip penetration in layered medium[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 375-381.
周健, 李魁星, 郭建军, 等. 分层介质中桩端刺入的室内模型试验及颗粒流数值模拟[J]. 岩石力学与工程学报, 2012, 31(2): 375-381.

【5】Li Y N, Li J P, Zhao Z F, et al. Model test research on penetration process of jacked pile in layered soil[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(6): 1409-1414.
李雨浓, 李镜培, 赵仲芳, 等. 层状地基静压桩贯入过程机理试验[J]. 吉林大学学报(地球科学版), 2010, 40(6): 1409-1414.

【6】Feng C, Li S H, Liu T P, et al. Experimental study on burying technology of fiber grating sensor system in driven pile[J]. Transducer and Microsystem Technologies, 2009, 28(9): 12-15.
冯春, 李世海, 刘天苹, 等. 光纤光栅传感系统在打入桩中的埋设工艺试验研究[J]. 传感器与微系统, 2009, 28(9): 12-15.

【7】Li S H, Wei Z A, Zhang J H, et al. Application of fiber grating sensing technology in model experiment of anti-landslide piles[J]. Transducer and Microsystem Technologies, 2006, 25(3): 84-85, 88.
李世海, 魏作安, 张俊红, 等. 光纤光栅传感技术在抗滑桩模型实验中的应用[J]. 传感器与微系统, 2006, 25(3): 84-85, 88.

【8】Zhu Y Q, Zhu H H, Sun Y J, et al. Model experiment study of pipe pile driving into soil using FBG-BOTDA sensing monitoring technology[J]. Rock and Soil Mechanics, 2014, 35(S2): 695-702.
朱友群, 朱鸿鹄, 孙义杰, 等. FBG-BOTDA联合感测管桩击入土层模型试验研究[J]. 岩土力学, 2014, 35(S2): 695-702.

【9】Sun S H, Yu Y L, Li H, et al. Detection technique of stress waves based on fiber Bragg grating[J]. Chinese Journal of Lasers, 2016, 43(5): 0505002.
孙诗惠, 余有龙, 李慧, 等. 基于光纤光栅的应力波检测技术研究[J]. 中国激光, 2016, 43(5): 0505002.

【10】Du Y, Si J H, Chen T, et al. Quasi-distributed high temperature sensor based on fiber Bragg grating[J]. Laser & Optoelectronics Progress, 2016, 53(10): 100606.
杜勇, 司金海, 陈涛, 等. 准分布式光纤布拉格光栅高温传感器[J]. 激光与光电子学进展, 2016, 53(10): 100606.

【11】Zhang W H, Jiang J F, Wang S, et al. Fiber-optic Fabry-Perot high-pressure sensor for marine applications[J]. Acta Optica Sinica, 2017, 37(2): 0206001.
张伟航, 江俊峰, 王双, 等. 面向海洋应用的光纤法布里-珀罗高压传感器[J]. 光学学报, 2017, 37(2): 0206001.

【12】Yan G, Xin J T, Chen H, et al. Sensing properties of fiber grating temperature sensor package preload[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(5): 967-971.
闫光, 辛璟涛, 陈昊, 等. 预紧封装光纤光栅温度传感器传感特性研究[J]. 振动、测试与诊断, 2016, 36(5): 967-971.

引用该论文

Wang Yonghong,Liu Junwei,Zhang Mingyi,Zhang Chunwei,Wang Mingming,Zhao Guoxiao. Test on Axial Force of Double-Walled Mode Pipe Pile Based on Fiber Bragg Grating[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110605

王永洪,刘俊伟,张明义,张春巍,王明明,赵国晓. 基于光纤布拉格光栅的双壁模型管桩轴力测试[J]. 激光与光电子学进展, 2018, 55(11): 110605

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF