首页 > 论文 > 激光与光电子学进展 > 55卷 > 11期(pp:111007--1)

基于暗通道去雾和深度学习的行人检测方法

A Pedestrian Detection Method Based on Dark Channel Defogging and Deep Learning

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

行人检测是实现智能交通与客流监控的关键技术,深度学习方法训练模型已经在行人检测领域取得了良好的效果。但是当训练样本质量不佳时,训练的模型往往不能得到令人满意的效果。为了提高雾霾天气与曝光较强环境下的行人检测效果,提出了将暗通道去雾算法应用于深度学习的样本预处理中,并使用快速深度卷积神经网络训练行人检测模型。在实验中,首先对10000张样本图片采用暗通道去雾算法进行预处理,之后分别使用有无暗通道去雾算法预处理的样本图片训练模型,最后比较这两种模型在不同场景下的模型检测准确率。实验结果表明,使用暗通道去雾预处理后的样本训练得到的深度模型具有更好的检测效果,在多种场景下的检测率都得到提升。

Abstract

Pedestrian detection is the key technology to realize intelligent traffic and passenger flow monitoring. Currently, the training model of deep learning method has achieved good results in pedestrian detection. However, when the training samples are poor, the training model often fails to achieve good results. In order to improve the effect of pedestrian detection under hazy weather and strong exposure environment, the dark channel defogging algorithm is applied to pretreat deep learning samples. And pedestrian detection model is trained with fast deep convolutional neural network. In this experiment, the dark channel defogging algorithm is applied to preprocess the 10,000 sample images. After that, the sample images preprocessed by the defogging algorithm with and without dark channel are used to train model, respectively. Finally, detection accuracy of these two models under different scenarios are compared. The experimental results show that the depth model obtained by using the dark channel defogging pretreatment sample has a better detection effect and the detection rate increases under many scenarios.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/lop55.111007

所属栏目:图像处理

基金项目:轨道交通突发事件应急抢险指挥辅助决策系统研发及示范(Z161100001016003)、国家重点研发计划资助(2016YFB1200402)

收稿日期:2018-04-16

修改稿日期:2018-05-16

网络出版日期:2018-05-29

作者单位    点击查看

田青:北方工业大学电子信息工程学院, 北京 100144
袁曈阳:北方工业大学电子信息工程学院, 北京 100144
杨丹:北方工业大学电子信息工程学院, 北京 100144
魏运:北京城建设计发展集团有限公司, 北京 100037

联系人作者:袁曈阳(2017311020137@mail.ncut.edu.cn)

【1】Sermanet P, Kavukcuoglu K, Chintala S, et al. Pedestrian detection with unsupervised multi-stage feature learning[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013: 3626-3633.

【2】Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.

【3】LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.

【4】Chen Y, Fan R S, Wang J X, et al. Cloud detection of ZY-3 satellite remote sensing images based on deep learning[J]. Acta Optica Sinica, 2018, 38(1): 0128005.
陈洋, 范荣双, 王竞雪, 等. 基于深度学习的资源三号卫星遥感影像云检测方法[J]. 光学学报, 2018, 38(1): 0128005.

【5】Guo H, Xu X T, Li B. Study on image dehazing methods based on dark channel prior[J]. Acta Optica Sinica, 2018, 38(4): 0410002.
郭翰, 徐晓婷,李博. 基于暗原色先验的图像去雾方法研究[J]. 光学学报, 2018, 38(4): 0410002.

【6】He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.

【7】Ye G L, Sun S Y, Gao K J, et al. Nighttime pedestrian detection based on faster region convolution neural network[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081003.
叶国林, 孙韶媛, 高凯珺, 等. 基于加速区域卷积神经网络的夜间行人检测研究[J]. 激光与光电子学进展, 2017, 54(8): 081003.

【8】Gupta S, Girshick R, Arbeláez P, et al. Learning rich features from RGB-D images for object detection and segmentation[C]∥European Conference on Computer Vision, 2014: 345-360.

【9】Yang A P, Bai H H. Nighttime image defogging based on the theory of Retinex and dark channel prior[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041002.
杨爱萍, 白煌煌. 基于Retinex理论和暗通道先验的夜间图像去雾算法[J]. 激光与光电子学进展, 2017, 54(4): 041002.

【10】Wang K, Dong Y, Bai H L, et al. Use fast R-CNN and cascade structure for face detection[C]∥Visual Communications and Image Processing (VCIP), 2016: 1-4.

【11】Eggert C, Brehm S, Winschel A, et al. A closer look: small object detection in faster R-CNN[C]∥IEEE International Conference on Multimedia and Expo (ICME), 2017: 421-426.

引用该论文

Tian Qing,Yuan Tongyang,Yang Dan,Wei Yun. A Pedestrian Detection Method Based on Dark Channel Defogging and Deep Learning[J]. Laser & Optoelectronics Progress, 2018, 55(11): 111007

田青,袁曈阳,杨丹,魏运. 基于暗通道去雾和深度学习的行人检测方法[J]. 激光与光电子学进展, 2018, 55(11): 111007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF