首页 > 论文 > 激光与光电子学进展 > 55卷 > 11期(pp:112801--1)

GLAS全波形数据的高斯分解与高斯小波基分解对比分析

Comparison and Analysis of Gaussian Decomposition and Gaussian Wavelet Decomposition for GLAS Full Waveform Data

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

大光斑激光测高的全波形数据分解是获取待测物体有效信息的关键环节。目前,大光斑激光测高的全波形数据分解方法主要采用高斯分解和小波分解。但是,对于不同地物反射的回波信号,这两种方法的分解效果与精度不明确。针对地球科学激光测高系统(GLAS)全波形数据,利用高斯分解与高斯小波基分解对平坦和斜坡区域中几种典型地物的波形数据进行分解,并采用最佳拟合优度与达到最佳拟合优度拟合次数等指标进行定性、定量比较与分析。实验结果表明:在最佳拟合优度上,高斯分解和高斯小波基分解数值接近,但随着地物复杂程度增加,高斯分解达到最佳拟合优度拟合的次数少于高斯小波基分解。

Abstract

Full waveform data decomposition is critical to obtain the effective information of tested object from the large-spot laser altimetry data. Gaussian decomposition and wavelet decomposition are two universal methods to achieve the full waveform data decomposition in the large-spot laser altimetry currently. However, the decomposition effect and accuracy are ambiguity for different echo signals of ground objects. In this paper, the two methods are applied to the full waveform data of the Geoscience Laser Altimeter System (GLAS), and the waveforms of several typical ground objects in flat and slop areas are decomposed. The results are analyzed and compared qualitatively and quantitatively according to the index of goodness-of-fit and the iteration times of achieving the best goodness-of-fit. The results show that the Gaussian decomposition and Guassian wavelet decomposition are nearly same for the accuracy of best goodness-of-fit. With the increase of the complexity of the ground objects, the iteration times of achieving the best goodness-of-fit with the Gaussian decomposition is less than that with the Gaussian wavelet decomposition.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN958.98

DOI:10.3788/lop55.112801

所属栏目:遥感与传感器

基金项目:国家自然科学基金(41671431,41501419)、上海市科委部分地方院校能力建设项目(15590501900,17050501900)

收稿日期:2018-05-08

修改稿日期:2018-05-19

网络出版日期:2018-05-29

作者单位    点击查看

黄冬梅:上海海洋大学信息学院, 上海 201306
徐基衡:上海海洋大学信息学院, 上海 201306
宋巍:上海海洋大学信息学院, 上海 201306
王振华:上海海洋大学信息学院, 上海 201306
刘向锋:中国科学院上海技术物理研究所, 上海 200083

联系人作者:宋巍(xiangfeng_liu@163.com)

【1】Hofton M A, Minster J B, Blair J B. Decomposition of laser altimeter waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1989-1996.

【2】Lemmens M. Airborne lidar sensors[J]. GIM International, 2007, 21(2): 24-27.

【3】Chauve A, Mallet C, Bretar F, et al. Processing full-waveform lidar data: modelling raw signals[C]∥International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 2007. Espoo, Finland, 2007: 102-107.

【4】Mallet C, Bretar F. Full-waveform topographic lidar: state-of-the-art[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(1): 1-16.

【5】Wagner W, Ullrich A, Ducic V, et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 100-112.

【6】Jutzi B, Stilla U. Range determination with waveform recording laser systems using a Wiener Filter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(2): 95-107.

【7】Shen J, Cao N W. Inversion of tropospheric aerosol extinction coefficient profile by Mie-Raman scattering lidar[J]. Chinese Journal of Lasers, 2017, 44(6): 0610003.
沈吉, 曹念文. 米-拉曼散射激光雷达反演对流层气溶胶消光系数廓线[J]. 中国激光, 2017, 44(6): 0610003.

【8】Song X Y, Cao N W, Yang S P. Influence factors on atmospheric aerosol optical property inversion in nanjing[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040101.
宋秀瑜, 曹念文, 杨思鹏. 探究影响南京地区大气气溶胶光学特性反演的因素[J]. 激光与光电子学进展, 2017, 54(4): 040101.

【9】Lü L H, Liu W Q, Zhang T S, et al. Characteristics of boundary layer height in jing-jin-ji area based on lidar[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010101.
吕立慧, 刘文清, 张天舒, 等. 基于激光雷达的京津冀地区大气边界层高度特征研究[J].激光与光电子学进展, 2017, 54(1): 010101.

【10】Schutz B E, Zwally H J, Shuman C A, et al. Overview of the ICESat mission[J]. Geophysical Research Letters, 2005, 32(21): L21S01.

【11】Hovi A, Korhonen L, Vauhkonen J, et al. LiDAR waveform features for tree species classification and their sensitivity to tree- and acquisition related parameters[J]. Remote Sensing of Environment, 2016, 173: 224-237.

【12】Wagner W, Ullrich A, Melzer T, et al. From single-pulse to full-waveform airborne laser scanners: potential and practical challenges[J]. International Archives of Photogrammetry and Remote Sensing, 2004, 35(B3): 201-206.

【13】Zhou T, Popescu S C, Krause K, et al. Gold—a novel deconvolution algorithm with optimization for waveform LiDAR processing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129: 131-150.

【14】Roncat A, Wagner W, Melzer T, et al. Echo detection and localization in full-waveform airborne laser scanner data using the averaged square difference function estimator[J]. Photogrammetric Journal of Finland, 2008, 21(1): 62-75.

【15】Persson , Sderman U, Tpel J, et al. Visualization and analysis of full-waveform airborne laser scanner data[C]∥International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, September 12-14, Enschede, Netherlands. [S. l. :s. n.], 2005, 36(part 3): W19.

【16】Ma H C, Li Q. Modified EM algorithm and its application to the decomposition of laser scanning waveform data[J]. Journal of Remote Sensing, 2009, 13(1): 35-41.

【17】Lin Y C, Mills J P, Smith-Voysey S. Rigorous pulse detection from full-waveform airborne laser scanning data[J]. International Journal of Remote Sensing, 2010, 31(5): 1303-1324.

【18】Zhu J F, Zhang Z X, Hu X Y, et al. Analysis and application of LiDAR waveform data using a progressive waveform decomposition method[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, 3812: 31-36.

【19】Lai X D, Qin N N, Han X S, et al. Iterative decomposition method for small foot-print LiDAR waveform[J]. Journal of Infrared and Millimeter Waves, 2013,32(4): 319-324.
赖旭东, 秦楠楠, 韩晓爽, 等. 一种迭代的小光斑LiDAR波形分解方法[J]. 红外与毫米波学报, 2013, 32(4): 319-324.

【20】Duan Y H, Zhang A W, Liu Z, et al. A Gaussian inflexion points matching method for Gaussian decomposition of airborne LiDAR waveform data[J]. Laser & Optoelectronics Progress, 2014, 51(10): 102801.
段乙好, 张爱武, 刘诏, 等.一种用于机载LiDAR波形数据高斯分解的高斯拐点匹配法[J]. 激光与光电子学进展, 2014, 51(10): 102801.

【21】Zhao Q H, Li H Y, Li Y. Gaussian mixture model with variable components for full waveform LiDAR data decomposition and RJMCMC algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12): 1367-1377.
赵泉华, 李红莹, 李玉. 全波形LiDAR数据分解的可变分量高斯混合模型及RJMCMC算法[J]. 测绘学报, 2015, 44(12): 1367-1377.

【22】Xu Y S, Weaver J B, Healy D M, et al. Wavelet transform domain filters: a spatially selective noise filtration technique[J]. IEEE Transactions on Image Processing, 1994, 3(6): 747-758.

【23】Lazaro J C, San Emeterio J L, Ramos A, et al. Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets[J]. Ultrasonics, 2002, 40(1-8): 263-267.

【24】Ma P G, Liu Y, Qi L, et al. Wavelet filter algorithm for echo signal of pulsed lidar at low SNR[J]. Electronics Optics & Control, 2011, 18(4): 26-29.
马鹏阁, 柳毅, 齐林, 等. 低信噪比下脉冲激光雷达回波信号小波域滤波算法[J]. 电光与控制, 2011, 18(4): 26-29.

【25】Shao X G, Cai W S, Sun P Y. Determination of the component number in overlapping multicomponent chromatogram using wavelet transform[J]. Chemometrics and Intelligent Laboratory Systems, 1998, 43(1/2): 147-155.

【26】Jiao L, Gao S Y, Zhang F, et al. Quantification of components in overlapping peaks from capillary electrophoresis by using continues wavelet transform method[J]. Talanta, 2008, 75(4): 1061-1067.

【27】Qiu S, Xing Y Q, Li L C, et al. ICESAT-GLAS data processing based on wavelet transform[J]. Forest Engineering, 2012,28(5): 33-35.
邱赛, 邢艳秋, 李立存, 等. 基于小波变换的ICESAT-GlAS波形处理[J]. 森林工程, 2012, 28(5): 33-35.

【28】Duan Y H, Zhang A W, Liu Z, et al. A combination method of wavelet transform and generalized Gaussian model for airborne laser scanning waveform decomposition[J]. Laser & Optoelectronics Progress, 2015, 52(12): 122802.
段乙好, 张爱武, 刘诏, 等. 一种用于机载激光雷达波形分解的小波变换与广义高斯模型组合法[J]. 激光与光电子学进展, 2015, 52(12): 122802.

【29】Wang C, Xi X H, Luo S Z, et al. Satellite-borne laser radar data processing and application[M]. Beijing: Science Press, 2015: 45-55.
王成, 习晓环, 骆社周, 等. 星载激光雷达数据处理与应用[M]. 北京: 科学出版社, 2015: 45-55.

【30】Cui C L. Research of forest tree height extraction for the laser altimeter satellite full waveform data[D]. Xuzhou: China University of Mining and Technology, 2016: 16-17.
崔成玲. 激光测高卫星全波形数据的森林树高提取研究[D]. 徐州: 中国矿业大学, 2016: 16-17.

【31】Parrish C E. Exploiting full-waveform lidar data and multiresolution wavelet analysis for vertical object detection and recognition[C]∥2007 IEEE International Geoscience and Remote Sensing Symposium, 23-28 July. Barcelona. New York: IEEE, 2008: 2499-2502.

【32】Tang F X, Li L W, Wang C. Method for waveform data decomposition of spaceborne laser radar based on wavelet analysis: CN101833087. B[P]. 2012.
唐福鑫, 李利伟, 王成. 基于小波分析的星载激光雷达波形数据分解的方法:CN101833087. B[P]. 2012.

【33】Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441.

引用该论文

Huang Dongmei,Xu Jiheng,Song Wei,Wang Zhenhua,Liu Xiangfeng. Comparison and Analysis of Gaussian Decomposition and Gaussian Wavelet Decomposition for GLAS Full Waveform Data[J]. Laser & Optoelectronics Progress, 2018, 55(11): 112801

黄冬梅,徐基衡,宋巍,王振华,刘向锋. GLAS全波形数据的高斯分解与高斯小波基分解对比分析[J]. 激光与光电子学进展, 2018, 55(11): 112801

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF