首页 > 论文 > 激光与光电子学进展 > 55卷 > 11期(pp:111404--1)

基于遗传算法的激光切割镍基合金质量优化

Quality Optimization of Laser-Cutted Ni-Based Alloys Based on Genetic Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于人工神经网络,对激光切割镍基合金样本进行了训练函数拟合,以电流、脉宽、切速及离焦量作为输入向量,以挂渣宽度、切缝宽度及切割完整度的综合评分作为输出向量,找出了最小误差的隐含层节点,以此模型预测激光切割质量,得到最大误差为7.66%,最小误差为-0.32%。以综合评分作为遗传算法的适应度值,在实际应用的工艺参数范围内随机选择了50个种群作为最初寻优群体,对其进行交叉、变异和迭代等操作,寻找最优适应度值及对应的工艺参数。理论预测的最优适应度值为98.41,实际值为89.53,误差为9.03%。该验证样本的质量明显高于25个实验样本的,挂渣平均宽度为81.5 μm,切缝平均宽度为164 μm。

Abstract

Based on an artificial neural network, the training function fitting of the laser-cutted Ni-based alloy samples is conducted. With the current, pulse width, cutting speed and defocusing amount as the input vectors and the comprehensive score of the slag width, kerf width, and cutting integrity as the output vector, the hidden layer node with the minimum error is found. Based on this model, the laser cutting quality is predicted. The maximum error is 7.66% and the minimum error is -0.32%. With the comprehensive score as the fitness value of the genetic algorithm, 50 species within the range of the practical process parameters are randomly selected as the initial optimal group. The treatments such as crossover, mutation and iteration are then made and the optimal fitness value and its corresponding process parameters are searched. The optimal fitness value which is predicted theoretically is 98.41, but the actual value is 89.53, and the error is 9.03%. The quality of this verification sample is obviously higher than those of 25 experimental samples. The average slag width is 81.5 μm and the kerf width is 164 μm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG485

DOI:10.3788/lop55.111404

所属栏目:激光器与激光光学

基金项目:国家科技支撑计划(2014BAH24F04)

收稿日期:2018-05-09

修改稿日期:2018-05-26

网络出版日期:2018-06-04

作者单位    点击查看

张艺赢:大连海事大学航运经济与管理学院, 辽宁 大连 116026
曹妍:大连海事大学航运经济与管理学院, 辽宁 大连 116026
陈宇翔:辽宁科技大学应用技术学院, 辽宁 鞍山 114051
牟向伟:大连海事大学航运经济与管理学院, 辽宁 大连 116026

联系人作者:陈宇翔(491208485@qq.com); 张艺赢(zhangyiying@dlmu.edu.cn); 曹妍(caoyan@dlmu.edu.cn);

【1】Feng W Q, Zhang Y F, Tao W, et al. Dissimilar metals combination of superalloy/stainless steel in T-shape by laser penetration welding[J]. Chinese Journal of Lasers, 2012, 39(10): 1003003.
冯威琦, 张云丰, 陶汪, 等. 高温合金/不锈钢异种材料T型接头激光穿透焊工艺研究[J]. 中国激光, 2012, 39(10): 1003003.

【2】Luo D, Lu Y Y, Guo X X, et al. Laser repairing process of V-groove in single-crystal superalloy[J]. Chinese Journal of Lasers, 2016, 43(5): 0503001.
罗登, 路媛媛, 郭溪溪, 等. 单晶高温合金V槽的激光修复工艺研究[J]. 中国激光, 2016, 43(5): 0503001.

【3】Ming X L, Chen J, Tan H, et al. Research on persistent fracture mechanism of laser forming repaired GH4169 superalloy[J]. Chinese Journal of Lasers, 2015, 42(4): 0403005.
明宪良, 陈静, 谭华, 等. 激光修复GH4169高温合金的持久断裂机制研究[J]. 中国激光, 2015, 42(4): 0403005.

【4】Chen Y X, Gao L. Analysis of processing parameters for laser cutting high-temperature alloy steel by orthogonal method[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111403.
陈宇翔, 高亮. 正交法分析激光切割高温合金钢工艺参数[J]. 激光与光电子学进展, 2016, 53(11): 111403.

【5】Yu T C, Chen Y X, Yue X, et al. Parameters of laser cutting Ni-based alloy steel with factors interaction[J]. Laser & Optoelectronics Progress, 2018, 55(2): 021413.
于天驰, 陈宇翔, 岳鑫, 等. 交互作用优化激光切割镍基合金工艺参数[J]. 激光与光电子学进展, 2018, 55(2): 021413.

【6】Zhao J P, Peng Y H, Nan Y B, et al. Analysis and prediction of 2Al2 aluminum alloy cutting process parameter[J]. Journal of Shaanxi University of Technology (Natural Science Edition), 2017, 33(2): 28-33.
赵晋平, 彭玉海, 南永博, 等. 2Al2铝合金切割工艺参数分析与预测[J]. 陕西理工学院学报(自然科学版), 2017, 33(2): 28-33.

【7】Chen J M, Zuo T C. Analysis of artificial neural network on 3D orientation CO2 laser cutting[J]. Chinese Journal of Lasers, 2004, 31(2): 245-248.
陈继民, 左铁钏. CO2激光三维方位切割的人工神经网络分析[J]. 中国激光, 2004, 31(2): 245-248.

【8】Guo H F, Li J L, Sun T. Roughness prediction of kerf cut with fiber laser based on BP artificial neural networks[J]. Laser Technology, 2014, 38(6): 798-803
郭华锋, 李菊丽, 孙涛. 基于BP神经网络的光纤激光切割切口粗糙度预测[J]. 激光技术, 2014, 38(6): 798-803.

【9】Li J M, Li G Z, Wang C M, et al. Design of quality prediction system of laser cutting based on MATLAB neural network[J]. Applied Laser, 2014, 34(2): 122-125.
李建敏, 李国柱, 王春明, 等. 基于MATLAB神经网络激光切割质量预测系统设计[J]. 应用激光, 2014, 34(2): 122-125.

【10】Ding H, Li Y W, Yuan D Q. Roughness prediction of laser drilling pore surface based on back-propagation artificial neural networks[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011407.
丁华, 李炎蔚, 袁冬青. 反向传播人造神经网络预测激光微孔表面粗糙度[J]. 激光与光电子学进展, 2017, 54(1): 011407.

【11】Tong G, Xu H, Yu H Q. Control model of laser cutting quality based on simulated annealing and BP neural network[J]. Machinery Design & Manufacture, 2012(6): 85-87.
童桂, 徐宏, 郁汉琪. 基于模拟退火的BP神经网络激光切割质量控制模型[J]. 机械设计与制造, 2016(6): 85-87.

【12】Badkar D S, Pandey K S, Buvanashekaran G. Development of RSM-and ANN-based models to predict and analyze the effects of process parameters of laser-hardened commercially pure titanium on heat input and tensile strength[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65: 1319-1338.

【13】Chaki S, Ghosal S. Application of an optimized SA-ANN hybrid model for parametric modeling and optimization of LASOX cutting of mild steel[J]. Production Engineering, 2011, 5(3): 251-262.

【14】Cao F G. Laser beam machining[M]. Beijing: Chemical Industry Press, 2015: 67.
曹凤国. 激光加工[M]. 北京: 化学工业出版社, 2015: 67.

【15】Han L Q, Shi Y. Artificial neural network theory and application[M]. Beijing: China Machine Press, 2016: 51-52.
韩力群, 施彦. 人工神经网络理论及应用[M]. 北京: 机械工业出版社, 2016: 51-52.

【16】Wang X C, Shi F, Yu L, et al. Matlab neural networks 43 cases analysis[M]. Beijing: Beihang University Press, 2013: 36-38.
王小川, 史峰, 郁磊, 等. Matlab神经网络43个案例分析[M]. 北京: 北京航空航天大学出版社, 2013: 36-38.

【17】Yu S G, Zhang L, Xie W L, et al. Fast and high-resolution spectrum analysis of optical frequency domain reflectometry based on genetic algorithm and Zoom FFT[J]. Acta Optica Sinica, 2017, 37(4): 0406003.
郁胜过, 张玲, 谢玮霖, 等. 基于遗传算法与Zoom FFT的光频域反射仪快速高精度频谱分析[J]. 光学学报, 2017, 37(4): 0406003.

【18】Zhou X Y, Zhang C, Kuang S Q, et al. Analysis of optical thin film structure based on quantum-inspired genetic algorithm[J]. Chinese Journal of Lasers, 2017, 44(12): 1203002.
周祥燕, 张超, 匡尚奇, 等. 基于量子衍生遗传算法的光学薄膜结构分析[J]. 中国激光, 2017, 44(12): 1203002.

【19】Gao H, Xue L Y. Back propagation neural network based on improved genetic algorithm fitting LED spectral model[J]. Laser & Optoelectronics Progress, 2017, 54(7): 072302.
高航, 薛凌云. 基于改进遗传算法的反向传播神经网络拟合LED光谱模型[J]. 激光与光电子学进展, 2017, 54(7): 072302.

引用该论文

Zhang Yiying,Cao Yan,Chen Yuxiang,Mu Xiangwei. Quality Optimization of Laser-Cutted Ni-Based Alloys Based on Genetic Algorithm[J]. Laser & Optoelectronics Progress, 2018, 55(11): 111404

张艺赢,曹妍,陈宇翔,牟向伟. 基于遗传算法的激光切割镍基合金质量优化[J]. 激光与光电子学进展, 2018, 55(11): 111404

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF