首页 > 论文 > 激光与光电子学进展 > 55卷 > 11期(pp:110402--1)

探测器非线性响应对能见度激光雷达的影响

Effect of Detector Nonlinear Response on Visibility Lidar

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在光子计数模式的激光雷达应用中,回波信号的动态范围大。激光雷达的远场回波信号处于探测器的线性输出区间,无需进行校准;近场信号基本处于探测器的非线性响应区,需要进行校准。为了提高远场信号的信噪比,提出了一种校准方法。依据脉冲激光雷达方程,使用远场信号反演得到修正的近场信号,并与接收的回波信号作比较,得到校准因子。进一步使用校准因子修正前后的数据分别反演了能见度,并与能见度仪的探测结果作比较。结果显示:对于未修正的数据,远场信号反演与能见度仪得到的能见度平均偏差和标准差分别为0.57 km和1.89 km,而近场信号的平均偏差大于10 km。由修正后的数据得到的能见度与能见度仪的结果符合得很好,平均偏差和标准差分别为0.43 km和0.76 km。

Abstract

The echo signals have a large dynamic range in the applications of photon counting mode lidar. The far-field echo signals of lidar are within the linear output range of detectors and thus no calibration is required. However, because the near-field signals are usually within the non-linear response area of detectors,it is necessary to calibrate the near-field signals. In order to improve the signal-to-noise ratio of far-field signals, a novel calibration method is proposed. According to the pulsed lidar equation, the corrected near-field signals are obtained by the retrieval of the far-field signals, and simultaneously are compared with the received echo signals to obtain a calibration factor. The data before and after correction by this calibration factor are further used to retrieve the visibility, respectively, which is compared with the detection results obtained by the visibility sensor. The results show that, for the uncorrected data, the average deviation and standard deviation between the visibility obtained by the far-field signals and that by the visibility sensor are 0.57 km and 1.89 km, respectively, while the average deviation exceeds 10 km for the near-field signals. The visibility obtained from the corrected data is in a good agreement with that by the visibility sensor. The average deviation and standard deviation are 0.43 km and 0.76 km, respectively.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN958.98

DOI:10.3788/lop55.110402

所属栏目:探测器

基金项目:中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC025)

收稿日期:2018-05-01

修改稿日期:2018-05-10

网络出版日期:2018-05-29

作者单位    点击查看

魏天问:中国科学技术大学地球和空间科学学院, 安徽 合肥 230026中国科学院近地空间环境重点实验室, 安徽 合肥 230026
王冲:中国科学技术大学地球和空间科学学院, 安徽 合肥 230026中国科学院近地空间环境重点实验室, 安徽 合肥 230026
上官明佳:中国科学技术大学地球和空间科学学院, 安徽 合肥 230026中国科学院近地空间环境重点实验室, 安徽 合肥 230026
尚祥:中国科学技术大学地球和空间科学学院, 安徽 合肥 230026中国科学院近地空间环境重点实验室, 安徽 合肥 230026
夏海云:中国科学技术大学地球和空间科学学院, 安徽 合肥 230026中国科学院近地空间环境重点实验室, 安徽 合肥 230026

联系人作者:夏海云(hsia@ustc.edu.cn); 魏天问(twwei@mail.ustc.edu.cn);

【1】Trger F. Springer handbook of lasers and optics[M]. New York: Springer-Verlag, 2007: 503-560.

【2】Zhang J, Itzler M A, Zbinden H, et al. Advances in InGaAs/InP single-photon detector systems for quantum communication[J]. Light: Science & Applications, 2015, 4(5): e286.

【3】Shangguan M J. Laser remote sensing with 1.5 μm single photon detector [D]. Hefei: University of Science and Technology of China, 2017: 16-23.
上官明佳. 1.5 μm 单光子探测器在激光遥感中的应用[D]. 合肥: 中国科学技术大学, 2017: 16-23.

【4】Shangguan M J, Wang C, Xia H Y, et al. Brillouin optical time domain reflectometry for fast detection of dynamic strain incorporating double-edge technique[J]. Optics Communications, 2017, 398: 95-100.

【5】Xia H Y, Shangguan M J, Wang C, et al. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer[J]. Optics Letters, 2016, 41(22): 5218-5221.

【6】Shangguan M J, Xia H Y, Wang C, et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector[J]. Optics Letters, 2017, 42(18): 3541-3544.

【7】Eisaman M D, Fan J, Migdall A, et al. Invited review article: single-photon sources and detectors[J]. Review of Scientific Instruments, 2011, 82(7): 071101.

【8】Yu C, Shangguan M J, Xia H Y, et al. Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications[J]. Optics Express, 2017, 25(13): 14611-14620.

【9】Tang D Y, Li H L, Chen X B, et al. Effects ofdetector′s nonlinearity on frequency response of visible light communication system[J]. Chinese Journal of Lasers, 2014, 41(4): 0405002.
唐丹颖, 李洪磊, 陈雄斌, 等. 探测器非线性对可见光通信系统幅频响应的影响[J]. 中国激光, 2014, 41(4): 0405002.

【10】Zhao W Q, Liu H, Liu J. Study on nonlinearity coefficient measurement for optical detector using infrared LED[J]. Acta Optica Sinica, 2015, 35(9): 0912002.
赵伟强, 刘慧, 刘建. 基于红外LED的光学探测器非线性系数测量研究[J]. 光学学报, 2015, 35(9): 0912002.

【11】Xia H Y, Dou X K, Sun D S, et al. Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method[J]. Optics Express, 2012, 20(14): 15286-15300.

【12】Donovan D P, Whiteway J A, Carswell A I. Correction for nonlinear photon-counting effects in lidar systems[J]. Applied Optics, 1993, 32(33): 6742-6753.

【13】Ingle J D, Crouch S R. Pulse overlap effects on linearity and signal-to-noise ratio in photon counting systems[J]. Analytical Chemistry, 1972, 44(4): 777-784.

【14】Xu L, Zhang Y, Zhang Y, et al. Research on the detection performance of Geiger-mode APD laser radar with accumulated detection[J]. Chinese Journal of Lasers, 2012, 39(4): 0414003.
徐璐, 张宇, 张勇, 等. 盖革模式雪崩光电二极管激光雷达累积探测性能的研究[J]. 中国激光, 2012, 39(4): 0414003.

【15】Xia H Y. Direct detection Doppler wind lidar based on aerosol backscattered signal with twin-channel Fabry-Perot etalon [D]. Suzhou: Soochow University, 2006: 60-62.
夏海云. 基于气溶胶后向散射的双边缘直接探测多普勒测风激光雷达研究[D]. 苏州: 苏州大学, 2006: 60-62.

【16】Spinhirne J D. Micro pulse lidar[J]. IEEE Transactions on Geoscienceand Remote Sensing, 1993, 31(1): 48-55.

【17】Klett J D. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics, 1981, 20(2): 211-220.

【18】Sun X H, Zhang T S, Lu Y H, et al. Optimization solution of atmospheric profile extinction coefficient by scanning lidar[J]. Chinese Journal of Lasers, 2014, 41(3): 0314001.
孙新会, 张天舒, 陆亦怀, 等. 扫描激光雷达大气剖面消光系数优化求解[J]. 中国激光, 2014, 41(3): 0314001.

【19】Xia H Y, Shentu G L, Shangguan M J, et al. Long-range micro-pulse aerosol lidar at 1.5 μm with an upconversion single-photon detector[J]. Optics Letters, 2015, 40(7): 1579-1582.

【20】Shang X, Xia H Y, Dou X K, et al. Adaptive inversion algorithm for 1.5 μm visibility lidar incorporating in situ Angstrom wavelength exponent[J]. Optics Communications, 2018, 418: 129-134.

引用该论文

Wei Tianwen,Wang Chong,Shangguan Mingjia,Shang Xiang,Xia Haiyun. Effect of Detector Nonlinear Response on Visibility Lidar[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110402

魏天问,王冲,上官明佳,尚祥,夏海云. 探测器非线性响应对能见度激光雷达的影响[J]. 激光与光电子学进展, 2018, 55(11): 110402

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF