首页 > 论文 > 激光与光电子学进展 > 55卷 > 11期(pp:112802--1)

多窗口顶帽变换机载激光点云噪声去除

Noise Removal of Multi-Window Top-Hat Transformation from Airborne Laser Point Cloud

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

机载激光雷达系统可以直接有效地获取地物的三维点云信息,为数字高程模型生成和建筑物检测与三维重建提供强有力的数据保障,但原始点云数据不可避免地会产生噪声点。提出了一种基于多窗口顶帽变换的机载激光雷达点云噪声去除算法。首先,根据原始点云间隔对点云进行内插生成网格,分别获取了最大和最小网格数据;然后,对网格数据进行聚类,根据每个聚类区域的尺寸设置阈值,检测出初始噪声点所在网格区域;最后,利用白、黑顶帽变换理论分别对最大和最小网格数据进行处理,检测出最终的噪声点所在网格区域。利用ISPRS数据对此方法和其他方法进行对比实验分析,结果表明,本文方法不仅可以较好地去除噪声点,还可以较完整地保存原始点云的细节信息。

Abstract

Airborne laser radar (LiDAR) system can directly and effectively obtain three-dimensional point cloud information of ground features, to provide powerful data guarantee for the generation of digital elevation model, building detection and three-dimensional reconstruction. However, the original point cloud data will inevitably produce noise points. A method of noise removal for airborne LiDAR point cloud based on the multi-window top-hat transformation is proposed. The grid interpolation is performed on the point cloud according to the interval of point cloud to obtain the maximum and minimum grid data, respectively. The grid data is clustered, and the original noise areas are detected by setting the area size threshold. The maximum and minimum grids are processed using the white and black top-hat transformation theory respectively to detect the final grid area where noise points are located. The method is compared and analyzed with other methods based on the ISPRS data. The results show that the proposed method can remove the noise points, and completely preserve the details of the original point cloud.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:P23

DOI:10.3788/lop55.112802

所属栏目:遥感与传感器

基金项目:河南省自然科学基金面上项目(182300410115)、河南省科技攻关(38172102310350)、河南理工大学博士基金(660507/018)

收稿日期:2018-06-12

修改稿日期:2018-07-12

网络出版日期:2018-07-18

作者单位    点击查看

赵宗泽:河南理工大学测绘与国土信息工程学院, 河南 焦作 454000
王春阳:河南理工大学测绘与国土信息工程学院, 河南 焦作 454000
王宏涛:河南理工大学测绘与国土信息工程学院, 河南 焦作 454000
王双亭:河南理工大学测绘与国土信息工程学院, 河南 焦作 454000

联系人作者:王春阳(wcy@hpu.edu.cn)

【1】Axelsson P. Processing of laser scanner data-algorithms and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2/3): 138-147.

【2】Li Y, Wu H Y, Xu H W, et al. A gradient-constrained morphological filtering algorithm for airborne LiDAR[J]. Optics & Laser Technology, 2013, 54: 288-296.

【3】Zhu J F, Hu X Y, Zhang Z X, et al. Hierarchical outlier detection for point cloud data using a density analysis method[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(3): 282-291.
朱俊锋, 胡翔云, 张祖勋, 等. 多尺度点云噪声检测的密度分析法[J]. 测绘学报, 2015, 44(3): 282-291.

【4】Zuo Z Q, Zhang Z X, Zhang J Q. Noise removal algorithm of LIDAR point clouds based on three-dimensional finite-element analysis[J]. Journal of Remote Sensing, 2012, 16(2): 297-309.
左志权, 张祖勋, 张剑清. 三维有限元分析的LIDAR点云噪声剔除算法[J]. 遥感学报, 2012, 16(2): 297-309.

【5】Mongus D, alik B. Computationally efficient method for the generation of a digital terrain model from airborne LiDAR data using connected operators[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 340-351.

【6】Ma X M, Li Y S, Xie J L. Experiment and analysis of point cloud denoising using bilateral filtering method[J]. Bulletin of Surveying and Mapping, 2017(2): 87-89, 115.
马先明, 李永树, 谢嘉丽. 利用双边滤波法进行点云去噪的试验与分析[J]. 测绘通报, 2017(2): 87-89, 115.

【7】Li R Z, Yang M, Ran Y, et al. Point cloud denoising and simplification algorithm based on method library[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011008.
李仁忠, 杨曼, 冉媛, 等. 基于方法库的点云去噪与精简算法[J]. 激光与光电子学进展, 2018, 55(1): 011008.

【8】Deng W J, Ye J Y, Zhang T. Acquisition and denoising algorithm of laser point cloud oriented to robot polishing[J]. Acta Optica Sinica, 2016, 36(8): 0814002.
邓文君, 叶景杨, 张铁. 面向机器人磨抛的激光点云获取及去噪算法[J]. 光学学报, 2016, 36(8): 0814002.

【9】Han W J, Zuo Z Q. Noise removing algorithm of LiDAR point clouds based on TIN smoothing rules[J]. Science of Surveying and Mapping, 2012, 37(6): 153-154, 132.
韩文军, 左志权. 基于三角网光滑规则的LiDAR点云噪声剔除算法[J]. 测绘科学, 2012, 37(6): 153-154, 132.

【10】Zhao K, Xu Y C, Li Y L, et al. Large-scale scattered point cloud denoising method based on VF-DBSCAN algorithm[J]. Acta Optica Sinica, 2018, 38(10): 1028001.
赵凯, 徐友春, 李永乐, 等. 基于VF-DBSCAN算法的大场景散乱点云去噪方法[J]. 光学学报, 2018, 38(10): 1028001.

【11】Filin S, Pfeifer N. Neighborhood systems for airborne laser data[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(6): 743-755.

【12】Pingel T J, Clarke K C, McBride W A. An improved simple morphological filter for the terrain classification of airborne LIDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 77: 21-30.

【13】Mongus D, Luka N, alik B. Ground and building extraction from LiDAR data based on differential morphological profiles and locally fitted surfaces[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 145-156.

【14】Sameen M I, Pradhan B, Shafri H Z M, et al. Integration of ant colony optimization and object-based analysis for LiDAR data classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 2055-2066.

【15】Axelsson P. DEM generation from laser scanner data using adaptive TIN models[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(4): 110-117.

【16】Kraus K, Pfeifer N. Determination of terrain models in wooded areas with airborne laser scanner data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1998, 53(4): 193-203.

【17】Zhao Z Z, Duan Y S, Zhang Y J, et al. Extracting buildings from and regularizing boundaries in airborne lidar data using connected operators[J]. International Journal of Remote Sensing, 2016, 37(4): 889-912.

【18】Zhao Z Z, Zhang Y J. Building extraction from airborne laser point cloud using NDVI constrained watershed algorithm[J]. Acta Optica Sinica, 2016, 36(10): 1028002.
赵宗泽, 张永军. 基于植被指数限制分水岭算法的机载激光点云建筑物提取[J]. 光学学报, 2016, 36(10): 1028002.

【19】Ma R. Building model reconstruction from LiDAR data and aerial photographs[D]. Columbus: Ohio State University, 2004.

【20】Jalba A C, Wilkinson M H F, Roerdink J B T M. Morphological hat-transform scale spaces and their use in pattern classification[J]. Pattern Recognition, 2004, 37(5): 901-915.

【21】Rottensteiner F, Sohn G, Gerke M, et al. Theme section “Urban object detection and 3D building reconstruction”[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 143-144.

【22】Cramer M. TheDGPF-test on digital airborne camera evaluation-overview and test design[J]. Photogrammetrie - Fernerkundung - Geoinformation, 2010(2): 73-82.

【23】Rusu R B, Cousins S. 3D is here: point cloud library (PCL)[C]∥IEEE International Conference on Robotics and Automation, 2011: 1-4.

引用该论文

Zhao Zongze,Wang Chunyang,Wang Hongtao,Wang Shuangting. Noise Removal of Multi-Window Top-Hat Transformation from Airborne Laser Point Cloud[J]. Laser & Optoelectronics Progress, 2018, 55(11): 112802

赵宗泽,王春阳,王宏涛,王双亭. 多窗口顶帽变换机载激光点云噪声去除[J]. 激光与光电子学进展, 2018, 55(11): 112802

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF