首页 > 论文 > Photonics Research > 6卷 > 11期(pp:987-990)

Broadband athermal waveguides and resonators for datacom and telecom applications

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

The high-temperature sensitivity of the silicon material index limits the applications of silicon-based micro-ring resonators in integrated photonics. To realize a low but broadband temperature-dependent-wavelength-shift microring resonator, designing a broadband athermal waveguide becomes a significant task. In this work, we propose a broadband athermal waveguide that shows a low effective thermo-optical coefficient of ±1×10?6/K from 1400 to 1700 nm. The proposed waveguide shows a low-loss performance and stable broadband athermal property when it is applied to ring resonators, and the bending loss of ring resonators with a radius of >30 μm is 0.02 dB/cm.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000987

所属栏目:Integrated optics

基金项目:National Basic Research Program of China (973) (2014CB340104/3); National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61775164, 61335005, 61377076, 61575142, 61431009); Tianjin University10.13039/501100004517.

收稿日期:2018-05-21

录用日期:2018-08-30

网络出版日期:2018-08-31

作者单位    点击查看

Liuqing He:Key Laboratory of Opto-electronic Information Technical Science of Ministry of Education, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, ChinaKey Laboratory of Integrated Opto-electronic Technologies and Devices in Tianjin, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
Yuhao Guo:Key Laboratory of Opto-electronic Information Technical Science of Ministry of Education, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, ChinaKey Laboratory of Integrated Opto-electronic Technologies and Devices in Tianjin, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
Zhaohong Han:Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Kazumi Wada:Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USADepartment of Materials Engineering, University of Tokyo, Tokyo 113-8656, Japan
Jurgen Michel:Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Anuradha M. Agarwal:Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Lionel C. Kimerling:Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Guifang Li:Key Laboratory of Opto-electronic Information Technical Science of Ministry of Education, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, ChinaKey Laboratory of Integrated Opto-electronic Technologies and Devices in Tianjin, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, ChinaCollege of Optics and Photonics, CREOL and FPCE, University of Central Florida, Orlando, Florida 32816, USA
Lin Zhang:Key Laboratory of Opto-electronic Information Technical Science of Ministry of Education, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, ChinaKey Laboratory of Integrated Opto-electronic Technologies and Devices in Tianjin, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China

联系人作者:Lin Zhang(lin_zhang@tju.edu.cn)

【1】R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12 , 1678–1687 (2006).

【2】R. Kirchain, and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1 , 303–305 (2007).

【3】J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4 , 535–544 (2010).

【4】R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4 , 495–497 (2010).

【5】B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15 , 998–1005 (1997).

【6】Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16 , 4309–4315 (2008).

【7】I. Chremmos, O. Schwelb, and N. Uzunoglu, Photonic Microresonator Research and Applications (Springer, 2010).

【8】K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20 , 27999–28008 (2012).

【9】B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18 , 3487–3493 (2010).

【10】G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25??Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19 , 20435–20443 (2011).

【11】B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37 , 2253–2255 (2012).

【12】V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18 , 17631–17639 (2010).

【13】Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55?mum wavelength using a silica-based athermal waveguide,” Electron. Lett. 34 , 367–369 (1998).

【14】J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” J. Lightwave Technol. 25 , 2236–2243 (2007).

【15】W. Ye, J. Michel, and L. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20 , 885–887 (2008).

【16】L. Zhou, K. Ken, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95 , 1101–1109 (2009).

【17】P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Athermal performance in high-Q polymer-clad silicon microdisk resonators,” Opt. Lett. 35 , 3462–3464 (2010).

【18】J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17 , 14627–14633 (2009).

【19】F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3 , 780–783 (2016).

【20】J. T. Bovington, “Athermal laser designs on Si and heterogeneous III-V/Si3N4 integration ,” Dissertations & Theses (Gradworks, 2014).

【21】B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21 , 26557–26563 (2013).

【22】F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal oxide semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102 , 051106 (2013).

【23】F. Qiu, A. M. Spring, and S. Yokoyama, “Athermal and high-Q hybrid TiO2–Si3N4 ring resonator via an etching-free fabrication technique,” ACS Photon. 2 , 405–409 (2015).

【24】S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21 , 13958–13968 (2013).

【25】H. Hirota, M. Itoh, M. Oguma, and Y. Hibino, “Athermal arrayed-waveguide grating multi/demultiplexers composed of TiO2-SiO2 waveguides on Si,” IEEE Photon. Technol. Lett. 17 , 375–377 (2005).

【26】T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Athermal and wavelength-trimmable photonic filters based on TiO2-cladded amorphous-SOI,” Opt. Express 23 , 20075–20088 (2015).

【27】J. Bovington, S. Srinivasan, and J. E. Bowers, “Athermal laser design,” Opt. Express 22 , 19357–19364 (2014).

【28】A. Arbabi, and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances,” Opt. Lett. 38 , 3878–3881 (2013).

【29】I. E. Zadeh, A. W. Elshaari, K. D. J?ns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits,” IEEE Photon. J. 8 , 2701009 (2016).

【30】G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550??K at the wavelength of 1523??nm,” Appl. Phys. Lett. 74 , 3338–3340 (1999).

【31】A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98 , 041102 (2011).

引用该论文

Liuqing He, Yuhao Guo, Zhaohong Han, Kazumi Wada, Jurgen Michel, Anuradha M. Agarwal, Lionel C. Kimerling, Guifang Li, and Lin Zhang, "Broadband athermal waveguides and resonators for datacom and telecom applications," Photonics Research 6(11), 987-990 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF