首页 > 论文 > Photonics Research > 6卷 > 11期(pp:1056-1061)

Broadband terahertz rotator with an all-dielectric metasurface

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Polarization manipulation is essential in developing cutting-edge photonic devices ranging from optical communication displays to solar energy harvesting. Most previous works for efficient polarization control cannot avoid utilizing metallic components that inevitably suffer from large ohmic loss and thus low operational efficiency. Replacing metallic components with Mie resonance-based dielectric resonators will largely suppress the ohmic loss toward high-efficiency metamaterial devices. Here, we propose an efficient approach for broadband, high-quality polarization rotation operating in transmission mode with all-dielectric metamaterials in the terahertz regime. By separating the orthogonal polarization components in space, we obtain rotated output waves with a conversion efficiency of 67.5%. The proposed polarization manipulation strategy shows impressive robustness and flexibility in designing metadevices of both linear- and circular-polarization incidences.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.001056

所属栏目:Integrated optics

基金项目:Ministry of Science and Technology of the People’s Republic of China (MOST)10.13039/501100002855; National Key Research and Development Program of China (2017YFA0701004); National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61875150, 6142010660, 61427814, 61605143, 61735012); King Abdullah University of Science and Technology (KAUST)10.13039/501100004052 (CRF-2016-2950-RG5).

收稿日期:2018-05-24

录用日期:2018-07-26

网络出版日期:2018-09-14

作者单位    点击查看

Quanlong Yang:Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, and the Key Laboratory of Optoelectronics Information and Technology Tianjin, Ministry of Education of China, Tianjin 300072, China
Xieyu Chen:Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, and the Key Laboratory of Optoelectronics Information and Technology Tianjin, Ministry of Education of China, Tianjin 300072, China
Quan Xu:Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, and the Key Laboratory of Optoelectronics Information and Technology Tianjin, Ministry of Education of China, Tianjin 300072, China
Chunxiu Tian:Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
Yuehong Xu:Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, and the Key Laboratory of Optoelectronics Information and Technology Tianjin, Ministry of Education of China, Tianjin 300072, China
Longqing Cong:Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
Xueqian Zhang:Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, and the Key Laboratory of Optoelectronics Information and Technology Tianjin, Ministry of Education of China, Tianjin 300072, China
Yanfeng Li:Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, and the Key Laboratory of Optoelectronics Information and Technology Tianjin, Ministry of Education of China, Tianjin 300072, China
Caihong Zhang:Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Xixiang Zhang:Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
Jiaguang Han:Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, and the Key Laboratory of Optoelectronics Information and Technology Tianjin, Ministry of Education of China, Tianjin 300072, China
Weili Zhang:Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, and the Key Laboratory of Optoelectronics Information and Technology Tianjin, Ministry of Education of China, Tianjin 300072, ChinaSchool of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USAe-mail: weili.zhang@okstate.edu

联系人作者:Jiaguang Han(jiaghan@tju.edu.cn)

【1】N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340 , 1304–1307 (2013).

【2】J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99 , 063908 (2007).

【3】L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14 , 115013 (2012).

【4】L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103 , 171107 (2013).

【5】Z. Liu, Z. Li, Z. Liu, J. Li, H. Cheng, P. Yu, W. Liu, C. Tang, C. Gu, J. Li, S. Chen, and J. Tian, “High-performance broadband circularly polarized beam deflector by mirror effect of multinanorod metasurfaces,” Adv. Funct. Mater. 25 , 5428–5434 (2015).

【6】S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634 , 1–72 (2016).

【7】Z. Liu, Z. Li, Z. Liu, H. Cheng, W. Liu, C. Tang, C. Gu, J. Li, H.-T. Chen, S. Chen, and J. Tian, “Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle,” ACS Photon. 4 , 2061–2069 (2017).

【8】L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8 , 626–632 (2014).

【9】N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12 , 6328–6333 (2012).

【10】A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10 , 937–943 (2015).

【11】Y. Yang, W. Wang, P. Moitra, I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14 , 1394–1399 (2014).

【12】P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17 , 445–452 (2017).

【13】J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17 , 407–413 (2016).

【14】L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2 , e70 (2013).

【15】A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38 , 513–515 (2013).

【16】F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9 , 4111–4119 (2015).

【17】Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4 , 7511 (2014).

【18】J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25 , 704–710 (2015).

【19】S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4 , 021026 (2014).

【20】K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D 47 , 505104 (2014).

【21】S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photon. 1 , 030801 (2016).

【22】Y. Liu, X. Ling, X. Yi, X. Zhou, S. Chen, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in dielectric metasurfaces with rotational symmetry breaking,” Opt. Lett. 40 , 756–759 (2015).

【23】I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, and I. Brener, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7 , 7824–7832 (2013).

【24】P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3 , 692 (2012).

【25】M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3 , 813–820 (2015).

【26】J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108 , 097402 (2012).

【27】L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12 , 5750–5755 (2012).

【28】X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alu, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27 , 1195–1200 (2015).

【29】M. Kang, J. Chen, X.-L. Wang, and H.-T. Wang, “Twisted vector field from an inhomogeneous and anisotropic metamaterial,” J. Opt. Soc. Am. B 29 , 572–576 (2012).

【30】Z. Liu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, P. Yu, J. Xia, and J. Tian, “Fully interferometric controllable anomalous refraction efficiency using cross modulation with plasmonic metasurfaces,” Opt. Lett. 39 , 6763–6766 (2014).

【31】F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12 , 1702–1706 (2012).

【32】N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334 , 333–337 (2011).

【33】Y. Yu, A. Zhu, R. Paniagua-Domínguez, Y. Fu, B. Luk’yanchuk, and A. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9 , 412–418 (2015).

引用该论文

Quanlong Yang, Xieyu Chen, Quan Xu, Chunxiu Tian, Yuehong Xu, Longqing Cong, Xueqian Zhang, Yanfeng Li, Caihong Zhang, Xixiang Zhang, Jiaguang Han, and Weili Zhang, "Broadband terahertz rotator with an all-dielectric metasurface," Photonics Research 6(11), 1056-1061 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF