首页 > 论文 > Photonics Research > 6卷 > 11期(pp:1084-1093)

Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We investigate the diffraction of the guided modes of a dielectric slab waveguide on a simple integrated structure consisting of a single dielectric ridge on the surface of the waveguide. Numerical simulations based on aperiodic rigorous coupled-wave analysis demonstrate the existence of sharp resonant features and bound states in the continuum (BICs) in the reflectance and transmittance spectra occurring at the oblique incidence of a transverse-electric (TE)-polarized guided mode on the ridge. Using the effective index method, we explain the resonances by the excitation of cross-polarized modes of the ridge. Formation of the BICs are confirmed using a theoretical model based on coupled-wave theory. The model suggests that the BICs occur due to the coupling of quasi-TE and quasi-transverse-magnetic modes of the structure. Simple analytical expressions for the angle of incidence and the ridge width predicting the location of the BICs are obtained. The existence of high-Q resonances and BICs enables using the considered integrated structure for sensing, transformation of optical signals, and enhancing nonlinear light–matter interactions. Due to the Lorentzian line shape of the resonances near the BICs, the structure is also promising for filtering applications.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.001084

所属栏目:Integrated optics

基金项目:Russian Foundation for Basic Research (RFBR)10.13039/501100002261 (16-29-11683, 17-47-630323); Ministry of Science and Higher Education of the Russian Federation (State assignment to the FSRC “Crystallography and Photonics” RAS).

收稿日期:2018-07-05

录用日期:2018-09-04

网络出版日期:2018-09-20

作者单位    点击查看

Evgeni A. Bezus:Image Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, 151 Molodogvardeyskaya St., Samara 443001, RussiaSamara National Research University, 34 Moskovskoe Shosse, Samara 443086, Russia
Dmitry A. Bykov:Image Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, 151 Molodogvardeyskaya St., Samara 443001, RussiaSamara National Research University, 34 Moskovskoe Shosse, Samara 443086, Russia
Leonid L. Doskolovich:Image Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, 151 Molodogvardeyskaya St., Samara 443001, RussiaSamara National Research University, 34 Moskovskoe Shosse, Samara 443086, Russia

联系人作者:Evgeni A. Bezus(evgeni.bezus@gmail.com)

【1】H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

【2】T. Mossberg, “Planar holographic optical processing devices,” Opt. Lett. 26 , 414–416 (2001).

【3】G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3 , e203 (2014).

【4】S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95 , 041105 (2009).

【5】C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37 , 695–697 (2012).

【6】C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, and V. Yankov, “High-resolution spectrometer-on-chip based on digital planar holography,” IEEE Photon. J. 3 , 888–896 (2011).

【7】X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array,” IEEE Photon. J. 5 , 7101307 (2013).

【8】L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, “Two-groove narrowband transmission filter integrated into a slab waveguide,” Photon. Res. 6 , 61–65 (2018).

【9】L. L. Doskolovich, E. A. Bezus, N. V. Golovastikov, D. A. Bykov, and V. A. Soifer, “Planar two-groove optical differentiator in a slab waveguide,” Opt. Express 25 , 22328–22340 (2017).

【10】M. Hammer, A. Hildebrandt, and J. F?rstner, “How planar optical waves can be made to climb dielectric steps,” Opt. Lett. 40 , 3711–3714 (2015).

【11】M. Hammer, A. Hildebrandt, and J. F?rstner, “Full resonant transmission of semiguided planar waves through slab waveguide steps at oblique incidence,” J. Lightwave Technol. 34 , 997–1005 (2016).

【12】A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82 , 2257–2298 (2010).

【13】W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38 , 1–74 (2014).

【14】C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Solja?i?, “Bound states in the continuum,” Nat. Rev. Mater. 1 , 16048 (2016).

【15】Z. F. Sadrieva, and A. A. Bogdanov, “Bound state in the continuum in the one-dimensional photonic crystal slab,” J. Phys. Conf. Ser. 741 , 012122 (2016).

【16】Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness,” ACS Photon. 4 , 723–727 (2017).

【17】D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100 , 183902 (2008).

【18】C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Solja?i?, “Observation of trapped light within the radiation continuum,” Nature 499 , 188–191 (2013).

【19】E. N. Bulgakov, and A. F. Sadreev, “Bloch bound states in the radiation continuum in a periodic array of dielectric rods,” Phys. Rev. A 90 , 053801 (2014).

【20】F. Monticone, and A. Alù, “Bound states within the radiation continuum in diffraction gratings and the role of leaky modes,” New J. Phys. 19 , 093011 (2017).

【21】C. Blanchard, J.-P. Hugonin, and C. Sauvan, “Fano resonances in photonic crystal slabs near optical bound states in the continuum,” Phys. Rev. B 94 , 155303 (2016).

【22】S. P. Shipman, and S. Venakides, “Resonant transmission near nonrobust periodic slab modes,” Phys. Rev. E 71 , 026611 (2005).

【23】L. Yuan, and Y. Y. Lu, “Propagating Bloch modes above the lightline on a periodic array of cylinders,” J. Phys. B 50 , 05LT01 (2017).

【24】C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Solja?i?, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2 , e84 (2013).

【25】E. N. Bulgakov, and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78 , 075105 (2008).

【26】I. V. Timofeev, D. N. Maksimov, and A. F. Sadreev, “Optical defect mode with tunable Q factor in a one-dimensional anisotropic photonic crystal,” Phys. Rev. B 97 , 024308 (2018).

【27】Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107 , 183901 (2011).

【28】M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface bound states in the continuum,” Phys. Rev. Lett. 108 , 070401 (2012).

【29】S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111 , 240403 (2013).

【30】C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, and G. C. Guo, “Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators,” Laser Photon. Rev. 9 , 114–119 (2015).

【31】E. A. Bezus, L. L. Doskolovich, and N. L. Kazanskiy, “Low-scattering surface plasmon refraction with isotropic materials,” Opt. Express 22 , 13547–13554 (2014).

【32】G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2003).

【33】R. D. Kekatpure, A. C. Hryciw, E. S. Barnard, and M. L. Brongersma, “Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator,” Opt. Express 17 , 24112–24129 (2009).

【34】M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12 , 1068–1076 (1995).

【35】L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13 , 1870–1876 (1996).

【36】E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18 , 2865–2875 (2001).

【37】J. P. Hugonin, and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22 , 1844–1849 (2005).

【38】C. R. Pollock, Fundamentals of Optoelectronics (McGraw-Hill, 2003).

【39】S.-T. Peng, and A. A. Oliner, “Guidance and leakage properties of a class of open dielectric waveguides: part I — mathematical formulations,” IEEE Trans. Microw. Theory Tech. 29 , 843–855 (1981).

【40】A. A. Oliner, S.-T. Peng, T. I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: part II—new physical effects,” IEEE Trans. Microw. Theory Tech. 29 , 855–869 (1981).

【41】D. A. Bykov, and L. L. Doskolovich, “Numerical methods for calculating poles of the scattering matrix with applications in grating theory,” J. Lightwave Technol. 31 , 793–801 (2013).

【42】D. A. Bykov, and L. L. Doskolovich, “On the use of the Fourier modal method for calculation of localized eigen modes of integrated optical resonators,” Comput. Opt. 39 , 663–673 (2015).

【43】N. A. Gippius, and S. G. Tikhodeev, “Application of the scattering matrix method for calculating the optical properties of metamaterials,” Phys. Usp. 52 , 967–971 (2009).

【44】V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Matrix Fabry–Perot resonance mechanism in high-contrast gratings,” Opt. Lett. 36 , 1704–1706 (2011).

【45】R. Orta, A. Tibaldi, and P. Debernardi, “Bimodal resonance phenomena — part II: high/low-contrast grating resonators,” IEEE J. Quantum Electron. 52 , 6600409 (2016).

【46】R. Orta, A. Tibaldi, and P. Debernardi, “Bimodal resonance phenomena — part I: generalized Fabry–Pérot interferometers,” IEEE J. Quantum Electron. 52 , 6100508 (2016).

引用该论文

Evgeni A. Bezus, Dmitry A. Bykov, and Leonid L. Doskolovich, "Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide," Photonics Research 6(11), 1084-1093 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF