首页 > 论文 > 液晶与显示 > 33卷 > 7期(pp:539-547)

光定域化蓝相软晶格结构的光学应用

Light-patterned blue phase soft cubic superstructure in optical applications

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

实验利用表面光取向技术控制蓝相晶格的有序生长,将光定域化取向与分子自组装相结合。通过对基板表面进行交替的取向/非取向控制,平面内获得周期排列的微结构,使蓝相图形化结构的反射光强度在空间上形成周期性调制,同时设计制备了振幅型衍射器件; 通过对基板表面做正交取向方向交替排列的微结构,使蓝相图形化结构的反射光相位在空间上形成周期性调制,设计制备了相位型衍射器件。这两类衍射器件均具有对入射光的波段选择性,即只有当入射光的波长局域在蓝相的反射带时才会呈现衍射效应。蓝相液晶软物质的特性又赋予它在电场下可调谐的波段选择性,即反射带位置随电场的增加发生红移从532 nm到610 nm,电场撤除则回复到初始状态。同时,借助于光取向材料的光可擦写特性,蓝相晶格的取向微结构能够重复的擦写与重构,从而实现不同衍射器件乃至不同衍射调制方式的转换。

Abstract

Combining light-patterning process with self-assembly trait, we applied photo-alignment technique to control the arrangement of liquid crystal blue phase (BP) cubic superstructure. By means of generating alternate aligned areas and non-aligned areas, the amplitude-modulation diffraction devices can be designed, which derives from the periodic reflection intensity of the patterned BP. By means of generating alternate orthogonal alignment directions, the phase-modulation diffraction devices can be designed, which are owing to the periodic reflected phase from the patterned BP. These two types of diffraction devices exhibit peculiarly wavelength-selectivity, which means that light diffraction occurs selectively to certain wavelength. Based on the soft attribute of BP, these devices can respond to applied electric field leading to a tunable wavelength-selectivity. When the external electric field was applied, the corresponding reflection waveband of BP exhibited a continuous red-shifting from 532 nm to 610 nm. Furthermore, a preferable feature of the devices is photo-induced dynamical erasability and rewritability due to rewritable characteristic of the photoalignment film, which results in realizing the conversion of different diffractive devices and even diffractive modulation modes.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN141.9

DOI:10.3788/yjyxs20183307.0539

所属栏目:材料与器件

基金项目:国家自然科学基金(No.61435008,No.61575063); 上海市青年科技启明星计划(No.17QA1401100)

收稿日期:2018-03-07

修改稿日期:2018-04-23

网络出版日期:--

作者单位    点击查看

袁丛龙:华东理工大学 理学院,上海 200237
周 康:华东理工大学 理学院,上海 200237
王骁乾:华东理工大学 理学院,上海 200237
沈 冬:华东理工大学 理学院,上海 200237
郑致刚:华东理工大学 理学院,上海 200237

联系人作者:袁丛龙(conglongyuan@qq.com)

备注:袁丛龙(1992-),男,山东青岛人,硕士,从事手性液晶微结构与光学器件的研究。

【1】NODA S, TOMODA K, YAMAMOTO N, et al. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths [J]. Science, 2000, 289(5479): 604-606.

【2】LIU N, GUO H C, FU L W, et al. Three-dimensional photonic metamaterials at optical frequencies [J]. Nature Materials, 2008, 7(1): 31-37.

【3】XIA Y, GATES B, LI Z Y. Self-assembly approaches to three-dimensional photonic crystals [J]. Advanced Materials, 2001, 13(6): 409-413.

【4】CAMPBELL M, SHARP D N, HARRISON M T, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography [J]. Nature, 2000, 404(6773): 53-56.

【5】HENNESSY K, BADOLATO A, TAMBOLI A, et al. Tuning photonic crystal nanocavity modes by wet chemical digital etching [J]. Applied Physics Letters, 2005, 87(2): 021108.

【6】CAO W Y, MUOZ A, PALFFY-MUHORAY P, et al. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II [J]. Nature Materials, 2002, 1(2): 111-113.

【7】MEIBOOM S, SAMMON M, BRINKMAN W F. Lattice of disclinations: the structure of the blue phases of cholesteric liquid crystals [J]. Physical Review A, 1983, 27(1): 438-454.

【8】DELACROIX H, GILLI J M, ERK I, et al. Structure analysis of a quenched blue phase I using electron microscopy [J]. Physical Review Letters, 1992, 69(20): 2935-2938.

【9】HIGASHIGUCHI K, YASUI K, KIKUCHI H. Direct observation of polymer-stabilized blue phase I structure with confocal laser scanning microscope [J]. Journal of the American Chemical Society, 2008, 130(20): 6326-6327.

【10】TANAKA S, YOSHIDA H, KAWATA Y, et al. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy [J]. Scientific Reports, 2015, 5: 16180.

【11】XU X W, LIU Z, LIU Y J, et al. Electrically switchable, hyper-reflective blue phase liquid crystals films [J]. Advanced Optical Materials, 2018, 6(3): 1700891.

【12】HUR S T, LEE B R, GIM M J, et al. Liquid-crystalline blue phase laser with widely tunable wavelength [J]. Advanced Materials, 2013, 25(21): 3002-3006.

【13】CHEN C W, LI C C, JAU H C, et al. Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals [J]. ACS Photonics, 2015, 2(11): 1524-1531.

【14】WANG M, ZOU C, SUN J, et al. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity [J]. Advanced Functional Materials, 2017, 27(46): 1702261.

【15】LIN T H, LI Y N, WANG C T, et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film [J]. Advanced Materials, 2013, 25(36): 5050-5054.

【16】WANG J, LIN C G, ZHANG J Y, et al. Polyoxometalate-based organic-inorganic hybrids for stabilization and optical switching of the liquid crystal blue phase [J]. Journal of Materials Chemistry C, 2015, 3(16): 4179-4187.

【17】GE S J, JI W, CUI G X, et al. Fast switchable optical vortex generator based on blue phase liquid crystal fork grating [J]. Optical Materials Express, 2014, 4(12): 2535-2541.

【18】CLAUS H, WILLEKENS O, CHOJNOWSKA O, et al. Inducing monodomain blue phase liquid crystals by long-lasting voltage application during temperature variation [J]. Liquid Crystals, 2016, 43(5): 668-693.

【19】CHEN H S, LIN Y H, WU C H, et al. Hysteresis-free polymer-stabilized blue phase liquid crystals using thermal recycles [J]. Optical Materials Express, 2012, 2(8): 1149-1155.

【20】CHEN Y, WU S T. Electric field-induced monodomain blue phase liquid crystals [J]. Applied Physics Letters, 2013, 102(17): 171110.

【21】CHEN M, LIN Y H, CHEN H S, et al. Electrically assisting crystal growth of blue phase liquid crystals [J]. Optical Materials Express, 2014, 4(5): 953-959.

【22】NAYEK P, JEONG H, PARK H R, et al. Tailoring monodomain in blue phase liquid crystal by surface pinning effect [J]. Applied Physics Express, 2012, 5(5): 051701.

【23】YAN J, WU S T, CHENG K L, et al. A full-color reflective display using polymer-stabilized blue phase liquid crystal [J]. Applied Physics Letters, 2013, 102(8): 081102.

【24】KIM K, HUR S T, KIM S, et al. A well-aligned simple cubic blue phase for a liquid crystal laser [J]. Journal of Materials Chemistry C, 2015, 3(21): 5383-5388.

【25】YOSHIDA H, KOBASHI J. Flat optics with cholesteric and blue phase liquid crystals [J]. Liquid Crystals, 2016, 43(13/15): 1909-1919.

【26】CHEN C W, HOU C T, LI C C, et al. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases [J]. Nature Communications, 2017, 8(1): 727.

【27】MARTNEZ-GONZLEZ J A, LI X, SADATI M, et al. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals [J]. Nature Communications, 2017, 8: 15854.

【28】ZHENG Z G, YUAN C L, HU W, et al. Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal [J]. Advanced Materials, 2017, 29(42): 1703165.

【29】OTON E, NETTER E, NAKANO T, et al. Monodomain blue phase liquid crystal layers for phase modulation [J]. Scientific Reports, 2017, 7: 44575.

【30】NAYEK P, PARK N H, NOH S C, et al. Analysis of surface anchored lattice plane orientation in blue phase liquid crystal and its in-plane electric field-dependent capacitance response [J]. Liquid Crystals, 2015, 42(8): 1111-1119.

【31】MILLER R J, GLEESON H F. Lattice parameter measurements from the kossel diagrams of the cubic liquid crystal blue phases [J]. Journal de Physique II, 1996, 6(6): 909-922.

【32】CHEN P J, CHEN M, NI S Y, et al. Influence of alignment layers on crystal growth of polymer-stabilized blue phase liquid crystals [J]. Optical Materials Express, 2016, 6(4): 1003-1010.

【33】HENRICH O, STRATFORD K, MARENDUZZO D, et al. Ordering dynamics of blue phases entails kinetic stabilization of amorphous networks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(30): 13212-13215.

【34】SUN P Z, LIU Z, WANG W, et al. Light-reconfigured waveband-selective diffraction device enabled by micro-patterning of a photoresponsive self-organized helical superstructure [J]. Journal of Materials Chemistry C, 2016, 4(39): 9325-9330.

【35】XU X W, LUO D, DAI H T. Optically switchable circularly polarization-dependent optical vortex [J]. IEEE Photonics Journal, 2016, 8(6): 7805207.

【36】AKIYAMA H, KAWARA T, TAKADA H, et al. Synthesis and properties of azo dye aligning layers for liquid crystal cells [J]. Liquid Crystals, 2002, 29(10): 1321-1327.

【37】ZHAO X J, BERMAK A, BOUSSAID F, et al. High-resolution photoaligned liquid-crystal micropolarizer array for polarization imaging in visible spectrum [J]. Optics Letters, 2009, 34(23): 3619-3621.

【38】MURAVSKY A, MURAUSKI A, CHIGRINOV V, et al. New properties and applications of rewritable azo‐dye photoalignment [J]. Journal of the Society for Information Display, 2008, 16(9): 927-931.

【39】BERREMAN D W. Optics in stratified and anisotropic media: 4×4-matrix formulation [J]. Journal of the Optical Society of America, 1972, 62(4): 502-510.

【40】SUN J, SRIVASTAVA A K, WANG L, et al. Optically tunable and rewritable diffraction grating with photoaligned liquid crystals [J]. Optics Letters, 2013, 38(13): 2342-2344.

引用该论文

YUAN Cong-long,ZHOU Kang,WANG Xiao-qian,SHEN Dong,ZHENG Zhi-gang. Light-patterned blue phase soft cubic superstructure in optical applications[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(7): 539-547

袁丛龙,周 康,王骁乾,沈 冬,郑致刚. 光定域化蓝相软晶格结构的光学应用[J]. 液晶与显示, 2018, 33(7): 539-547

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF