首页 > 论文 > 液晶与显示 > 33卷 > 7期(pp:596-605)

基于卷积神经网络的响应自适应跟踪

Response adaptive tracking based on convolution neural network

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对目标跟踪中的遮挡、旋转、快速运动、形变等问题,本文提出基于卷积神经网络的响应自适应跟踪算法。首先,通过卷积神经网络提取目标的多层卷积特征,利用粒子滤波算法获取目标的多模板响应图,自适应学习目标的期望响应; 然后通过构造目标函数的对偶形式解决多模板联合优化问题,计算多模板情况下每层卷积特征的最优滤波参数; 最后通过相关滤波算法计算多层滤波响应,通过响应加权融合的方式计算最终响应图,以此估计目标位置。本文利用OTB-2013数据集中的方法测试我们提出的算法,实验表明该算法的整体成功率和精确度为0.884和0.915。本文算法在距离准确度、成功率和平均跟踪误差方面均优于传统的相关滤波跟踪算法,有一定研究价值。

Abstract

In order to solve the problem of the occlusion, rotation, fast motion, deformation in target tracking, the paper proposes the response adaptive tracking algorithm based on convolution neural network. First, we extract multi-layer convolutional features of target by using convolution neural network, and gain the multi-template response of the target exploiting particle filter algorithm to adaptively learn the objectives of the expected response. Then, the dual form of the objective function is constructed to solve the multi-template joint optimization problem in order to calculate the optimal filtering parameters of each-layer convolutional features in the multi-template case. Finally, we calculate the multi-layer response by utilizing correlation filter algorithm and calculate the final response map by using the weighted fusion method, and then the proposed algorithm estimates the target position by employing the final response map. In this paper, we use the method of OTB-2013 data set to test the algorithm, experimental results show that the overall success rate and accuracy of the algorithm are 0.884 and 0.915,repectively. The algorithm is better than the traditional correlation filter tracking algorithm in distance precision, success rate and average tracking error, so it has a certain research value.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/yjyxs20183307.0596

所属栏目:图像处理

基金项目:河北省自然科学基金面上项目(No.F2017202009)

收稿日期:2018-02-08

修改稿日期:2018-04-16

网络出版日期:--

作者单位    点击查看

李 勇:河北工业大学 控制科学与工程学院, 天津 300130
杨德东:河北工业大学 控制科学与工程学院, 天津 300130
毛 宁:河北工业大学 控制科学与工程学院, 天津 300130
李雪晴:河北工业大学 控制科学与工程学院, 天津 300130

联系人作者:李勇(lewin309@163.com)

备注:李勇(1993-),男,云南昭通人,硕士研究生,2017年于河北工业大学获得学士学位,同年考取河北工业大学控制科学与工程学院控制工程硕士,主要从事视觉目标跟踪方面的研究。

【1】KWON J, LEE K M. Visual tracking decomposition [C]//Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010: 1269-1276.

【2】SHARMA S, KHACHANE A, MOTWANI D. Real time multi-object tracking using TLD framework [C]//Proceedings of 2016 International Conference on Inventive Computation Technologies. Coimbatore, India: IEEE, 2016: 1-6.

【3】BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online multiple instance learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.

【4】HERE S, SAFFARI A, TORR P H S. Struck: structured output tracking with kernels [C]//Proceedings of 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 263-270.

【5】ZHAO M, QIAN H M, RONG Y J, et al. Robust object tracking via sparse representation based on compressive collaborative Haar-like feature space [C]//Proceedings of 2016 International Conference on Audio, Language and Image Processing. Shanghai, China: IEEE, 2016: 274-278.

【6】LIU Y X, ZHANG Y Z, HU M Y, et al. Fast tracking via spatio-temporal context learning based on multi-color attributes and pca [C]//Proceedings of 2017 IEEE International Conference on Information and Automation. Macau, China: IEEE, 2017: 398-403.

【7】张雷,王延杰,孙宏海,等.采用核相关滤波器的自适应尺度目标跟踪[J].光学 精密工程,2016,24(2): 448-459.
ZHANG L, WANG Y J, SUN H H, et al. Adaptive scale object tracking with kernelized correlation filters [J]. Optics and Precision Engineering, 2016, 24(2): 448-459. (in Chinese)

【8】HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.

【9】王暐,王春平,李军,等.特征融合和模型自适应更新相结合的相关滤波目标跟踪[J].光学 精密工程,2016,24(8): 2059-2066.
WANG W, WANG C P, LI J, et al. Correlation filter tracking based on feature fusing and model adaptive updating[J]. Optics and Precision Engineering, 2016, 24(8): 2059-2066. (in Chinese)

【10】WU Y, LIM J, YANG M H. Online object tracking: a benchmark [C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013: 2411-2418.

【11】SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition \[OL\]. eprint arXiv: 1409.1556, 2015.

【12】DENG J, DONG W, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009: 248-255.

【13】Adel B, Matthias M, Bernard G, et al. Target response adaptation for correlation filter tracking[C]. European Conference on Computer Vision, 2016: 1-6.

【14】GAO J, LING H B, HU W M, et al. Transfer learning based visual tracking with Gaussian processes regression [C]//FLEET D, PAJDLA T, SCHIELE B, et al. Computer Vision – ECCV 2014. Cham: Springer, 2014, 8691: 188-203.

【15】ZHANG K H, ZHANG L, YANG M H. Real-time compressive tracking [C]//FITZGIBBON A, LAZEBNIK S, PERONA P, et al. Computer Vision – ECCV 2012. Berlin, Heidelberg: Springer, 2012, 7574: 864-877.

【16】WANG N Y, YEUNG D Y. Learning a deep compact image representation for visual tracking [C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: ACM, 2013: 809-817.

【17】刘扬,张云峰,董月芳.复杂背景下抗遮挡的运动目标跟踪算法[J].液晶与显示,2010,25(6): 890-895.
LIU Y, ZHANG Y F, DONG Y F. Anti-occlusion algorithm of tracking moving object in clutter background [J]. Chinese Journal of Liquid Crystals and Displays, 2010, 25(6): 890-895. (in Chinese)

【18】杨德东,毛宁,杨福才,等.利用最佳伙伴相似性的改进空间正则化判别相关滤波目标跟踪[J].光学 精密工程,2018,26(2): 492-502.
YANG DD, MAO N, YANG F C, et al. Improved SRDCF object tracking via the best-buddies similarity [J]. Optics and Precision Engineering, 2018, 26(2): 492-502. (in Chinese)

引用该论文

LI Yong,YANG De-dong,MAO Ning,LI Xue-qing. Response adaptive tracking based on convolution neural network[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(7): 596-605

李 勇,杨德东,毛 宁,李雪晴. 基于卷积神经网络的响应自适应跟踪[J]. 液晶与显示, 2018, 33(7): 596-605

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF