光学学报, 2018, 38 (12): 1219001, 网络出版: 2019-05-10   

不对称偏振控制方案中两束脉冲强度比改变对原子电离及高次谐波产生的影响 下载: 856次

Influence of Intensity Ratio of Two-Beam Pulses on Atomic Ionization and High Harmonic Generation in Non-Symmetric Polarization Control Scheme
作者单位
长春理工大学理学院, 吉林 长春 130022
摘要
偏振控制方案用以产生阿秒脉冲,其高次谐波辐射仅发生在偏振门内的线性半个光学周期,且可得到在整个平台区及截止位置附近皆连续的谐波谱。利用Ammosov-Delone-Krainov隧穿电离理论和强场近似方法,数值模拟了偏振控制方案中两束反向旋转圆偏振脉冲之间强度比对原子的电离几率及高次谐波发射功率谱的影响。研究发现, 合理控制两束脉冲的强度比,可确保原子的有效电离发生在偏振门的前1/4光学周期,这有利于得到频域上优化的高次谐波发射谱。此外,可以根据需要在强度比小于1的范围内优化选择谐波谱的截止位置和转换效率。
Abstract
The polarization control scheme is generally used for generating attosecond pulse, in which the high harmonic emission only occurs within a half optical period of polarization gating and thus the obtained harmonic spectrum is continuous in the whole plateau and at the cutoff position. Based on the Ammosov-Delone-Krainov tunneling ionization theory and the strong field approximation method, the effect of the intensity ratio of two-beam counter-rotating circularly polarized pulses in the polarization control scheme on atomic ionization probability and harmonic emission power spectra is investigated by numerical simulation. It is found that if the intensity ratio of two-beam pulses is properly controlled, the effective atomic ionization can take place in the first quarter of an optical period of polarization gating, which is beneficial to obtain an optimal high harmonic spectrum. Moreover, one can optimize the cutoff position and conversion efficiency of harmonic spectra according to the needs, provided the intensity ratio is always less than 1.

宋浩, 苏宁, 陈高. 不对称偏振控制方案中两束脉冲强度比改变对原子电离及高次谐波产生的影响[J]. 光学学报, 2018, 38(12): 1219001. Hao Song, Ning Su, Gao Chen. Influence of Intensity Ratio of Two-Beam Pulses on Atomic Ionization and High Harmonic Generation in Non-Symmetric Polarization Control Scheme[J]. Acta Optica Sinica, 2018, 38(12): 1219001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!