首页 > 论文 > 光学学报 > 38卷 > 12期(pp:1206002--1)

蛙人协作中的水下无线光通信邻居发现方法

Neighbor Discovery Method for Frogmen Cooperation in Underwater Wireless Optical Communication

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对蛙人在水下协作执行任务时保持良好通信的需求,研究采用无线光通信技术的节点邻居发现方法。由于光束具有方向性,为了保证邻居发现效果,基于无线光水下传播特性设计半球形通信节点结构,通过成对使用的方式完成对蛙人周围三维空间的覆盖。在半球形节点结构基础上研究采用握手交互信息帧的邻居发现协议,通过发光二极管(LED)逐向扫描发送交互信息的方式,可以不依靠外部定位信息发现相邻蛙人节点。针对蛙人在运动状态下通信链路容易发生中断的问题,研究通信链路的跟踪保持方法。仿真结果表明,在合理选择节点结构参数的情况下,邻居发现方法能有效发现邻居节点,建立通信链路,跟踪保持方法也能显著降低通信链路的中断次数。

Abstract

In order to meet the needs of keeping communication with frogmen in the execution of a task of underwater cooperation, we study a node neighbor discovery method using the wireless optical communication technology. Because the light beam is directional, we design a hemispherical communication node structure based on propagation characteristics of underwater wireless optical communication to guarantee the effect of neighbor discovery. The three dimensional space around the frogmen can be covered with the node structure in pairs. We study a neighbor discovery protocol using the information frames of handshake interaction on the basis of the hemispherical node structure. We find the adjacent nodes of frogmen without external location information through scanning and sending handshake interaction information with the light emitting diodes(LED). Aiming at the problem that the communication link of the frogmen is prone to interrupt in the moving state, we research a track-and-hold method of the communication link. The simulation results show that the neighbor discovery method can effectively discover the neighbor nodes to establish the communication link based on the reasonable selection of the node structure parameters, and the track-and-hold method can also significantly reduce the number of communication link interrupt.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.1

DOI:10.3788/aos201838.1206002

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金-中国民航局民航联合研究基金(U1433110)、陕西省教育厅服务地方专项计划(17-JF024)、陕西省重点产业链创新计划项目(2017ZDCXL-GY-06-01)、西安市碑林区科技计划项目(GX1617)、特殊环境机器人技术四川省重点实验室开放基金(17kftk04)

收稿日期:2018-06-06

修改稿日期:2018-07-21

网络出版日期:2018-08-17

作者单位    点击查看

赵太飞:西安理工大学自动化与信息工程学院, 陕西 西安 710048西南科技大学特殊环境机器人技术四川省重点实验室, 四川 绵阳 621010
王晶:西安理工大学自动化与信息工程学院, 陕西 西安 710048
张杰:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
江亮:西安理工大学自动化与信息工程学院, 陕西 西安 710048

联系人作者:赵太飞(zhaotaifei@163.com)

【1】Xue Q L. Frogman transporter advances underwater special battle field[J]. Modern Navy, 2004(3): 44-45.
薛青丽. 蛙人输送艇挺进水下特种战场[J]. 当代海军, 2004(3): 44-45.

【2】Teng J, Guo W H, Liu D L. Research into underwater special operation of foreign navy[J]. Shipboard Electronic Countermeasure, 2012, 35(4): 39-42.
滕俊, 郭万海, 刘冬利. 国外海军水下特种作战研究[J]. 舰船电子对抗, 2012, 35(4): 39-42.

【3】Shah G A. A survey on medium access control in underwater acoustic sensor networks[C]∥2009 International Conference on Advanced Information Networking and Applications Workshops, May 26-29, 2009, Bradford, UK. New York: IEEE, 2009: 1178-1183.

【4】Wang H H, She Y J, Luo T. Study on radio navigation and position experiment with trailing wire antenna[J]. Ship Science and Technology, 2009, 31(12): 96-98.
王红华, 佘亚军, 罗涛. 拖曳天线用于无线电导航定位试验研究[J]. 舰船科学技术, 2009, 31(12): 96-98.

【5】Huang A P, Tao L W. Monte Carlo based channel characteristics for underwater optical wireless communications[J]. IEICE Transactions on Communications, 2017, E100-B(4): 612-618.

【6】Duntley S Q. Light in the sea[J]. Journal of the Optical Society of America, 1963, 53(2): 214-233.

【7】Haltrin V I. Chlorophyll-based model of seawater optical properties[J]. Applied Optics, 1999, 38(33): 6826-6832.

【8】Tivy M, Fucile P, Sichel E. A low power, low cost, underwater optical communication system[J]. Ridge 2000 Event 2, 2004: 27-29.

【9】Gabriel C, Khalighi M A, Bourennane S, et al. Monte-Carlo-based channel characterization for underwater optical communication systems[J]. Journal of Optical Communications and Networking, 2013, 5(1): 1-12.

【10】Sahu S K, Shanmugam P. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system[J]. Optics Communications, 2018, 408: 3-14.

【11】Hu S Q, Zhou T H, Chen W B. Performance analysis and simulation of maximum ratio combining in underwater laser communication[J]. Chinese Journal of Lasers, 2016, 43(12): 1206003.
胡思奇, 周田华, 陈卫标. 水下激光通信最大比合并分集接收性能分析及仿真[J]. 中国激光, 2016, 43(12): 1206003.

【12】Du J S, Zhou T H, Chen W B, et al. Performance analysis of underwater optical communication based on LDPC and PPM[J]. Laser & Optoelectronics Progress, 2016, 53(12): 120605.
杜劲松, 周田华, 陈卫标, 等. 基于LDPC和PPM的水下光通信性能分析[J]. 激光与光电子学进展, 2016, 53(12): 120605.

【13】Liu X Y, Yi S Y, Zhou X L, et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Optics Express, 2017, 25(22): 27937-27947.

【14】Zhang R, Zhang Y. Wormhole-resilient secure neighbor discovery in underwater acoustic networks[C]∥2010 Proceedings IEEE INFOCOM, March 14-19, 2010, San Diego, CA, USA. New York: IEEE, 2010: 11291509.

【15】Petroccia R. A distributed ID assignment and topology discovery protocol for underwater acoustic networks[C]∥2016 IEEE Underwater Communications and Networking Conference, August 30-Septmber 1, 2016, Lerici, Italy. New York: IEEE, 2016: 16357675.

【16】Kalaiselvan S A, Parthasarathy V. Location verification based neighbor discovery for shortest routing in underwater acoustic sensor network[J]. Advances in Environmental Biology, 2015, 9(14): 117-121.

【17】Arnon S, Kedar D. Non-line-of-sight underwater optical wireless communication network[J]. Journal of the Optical Society of America A, 2009, 26(3): 530-539.

【18】Liu W H, Xu Z Y, Yang L Q. SIMO detection schemes for underwater optical wireless communication under turbulence[J]. Photonics Research, 2015, 3(3): 48-53.

【19】Oubei H M, ElAfandy R T, Park K H, et al. Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations[J]. IEEE Photonics Journal, 2017, 9(2): 7903009.

【20】Oubei H M, Zedini E, ElAfandy R T, et al. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems[J]. Optics Letters, 2017, 42(13): 2455-2458.

引用该论文

Zhao Taifei,Wang Jing,Zhang Jie,Jiang Liang. Neighbor Discovery Method for Frogmen Cooperation in Underwater Wireless Optical Communication[J]. Acta Optica Sinica, 2018, 38(12): 1206002

赵太飞,王晶,张杰,江亮. 蛙人协作中的水下无线光通信邻居发现方法[J]. 光学学报, 2018, 38(12): 1206002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF