首页 > 论文 > 光学学报 > 38卷 > 12期(pp:1228001--1)

基于微通道板的单光子激光测高技术研究

Photon-Counting Laser Altimetry Based on Microchannel Plate

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

与传统的激光测高技术相比,单光子激光测高技术具有数据量大、质量轻、测距精度高等优势,是激光测高技术的发展趋势。建立数学模型对单光子激光测高特性进行研究,用数值计算估计了单光子激光测高的性能,并建立了地物模型,用蒙特卡罗方法进行了仿真,提出了测高数据的滤波方法和一种利用遥感图像优化高程信息的算法。结果表明:在正午阳光背景最强烈的条件下,典型地物模型单光子激光测高的均方根误差为6.1 cm,用算法优化后的误差为2.6 cm。

Abstract

Compared with the traditional laser altimetry technology, the photon-counting laser altimetry technology has the advantages of large data, light weight, and high ranging precision, which is the development trend of laser altimeter technolgoy. In this paper, we establish a mathematical model to study the characteristics of the photon-counting laser altimetry. The performance of the photon-counting laser altimeter is estimated by numerical calculation. The ground object model is established, and the simulation is carried out with Monte Carlo method. A filtering method for the altimetry data and an algorithm for optimizing the elevation information using the remote sensing images are proposed. The results show that the root-mean-square error of the photon-counting laser altimeter is 6.1 cm under the condition of the noonday background with the most intense sun for the typical ground model, and the error after optimization by the algorithm is 2.6 cm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/aos201838.1228001

所属栏目:遥感与传感器

收稿日期:2018-06-05

修改稿日期:2018-06-29

网络出版日期:2018-07-05

作者单位    点击查看

米小什:中国科学院西安光学精密机械研究所, 陕西 西安 710119中国科学院大学, 北京 100049
赵惠:中国科学院西安光学精密机械研究所, 陕西 西安 710119
樊学武:中国科学院西安光学精密机械研究所, 陕西 西安 710119
盛立志:中国科学院西安光学精密机械研究所, 陕西 西安 710119

联系人作者:赵惠(zhaohui@opt.ac.cn)

【1】Li R, Wang C, Su G Z, et al. Development and applications of spaceborne LiDAR[J]. Science & Technology Review, 2007, 25(14): 58-63.
李然, 王成, 苏国中, 等. 星载激光雷达的发展与应用[J]. 科技导报, 2007, 25(14): 58-63.

【2】Nozette S, Rustan P, Pleasance L P, et al. The clementine mission to the moon: scientific overview[J]. Science, 1994, 266(5192): 1835-1839.

【3】Nozette S, Lichtenberg C L, Spudis P, et al. The clementine bistatic radar experiment[J]. Science, 1996, 274(5292): 1495-1498.

【4】Tang X M, Li G Y. Development and prospect of laser altimetry satellite[J]. Space International, 2017(11): 13-18.
唐新明, 李国元. 激光测高卫星的发展与展望[J]. 国际太空, 2017(11): 13-18.

【5】Yang F, He Y, Zhou T H, et al. Simulation of space-borne altimeter based on pseudorandom modulation and single-photon counting[J]. Acta Optica Sinica, 2009, 29(1): 21-26.
杨馥, 贺岩, 周田华, 等. 基于伪随机码调制和单光子计数的星载测高计仿真[J]. 光学学报, 2009, 29(1): 21-26.

【6】Schutz B E. Laser altimetry and lidar from ICESat/GLAS[C]. 2001 International Geoscience and Remote Sensing Symposium, Sydney, 2001: 1016-1019.

【7】Smith D E, Zuber M T, Jackson G B, et al. The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission[J]. Space Science Reviews, 2010, 150(1/2/3/4): 209-241.

【8】Wang J Y, Shu R, Chen W B, et al. Lather altimeters of Chang′e-1[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2010, 40(8): 1063-1070.
王建宇, 舒嵘, 陈卫标, 等. 嫦娥一号卫星载激光高度计[J]. 中国科学: 物理学 力学 天文学, 2010, 40(8): 1063-1070.

【9】Ouyang Z Y. Science results of Chang′e-1 lunar orbiter and mission goals of Chang′e-2[J]. Spacecraft Engineering, 2010, 19(5): 1-6.
欧阳自远. 嫦娥一号卫星的初步科学成果与嫦娥二号卫星的使命[J]. 航天器工程, 2010, 19(5): 1-6.

【10】Song B, Li X, Zheng W, et al. The implementation of high precision space-borne laser ranging technology in ZY-3(02) satellite[J]. Optoelectronic Technology, 2017, 37(1): 61-65.
宋博, 李旭, 郑伟, 等. 资源三号(02)星载高精度激光测距技术的实现[J]. 光电子技术, 2017, 37(1): 61-65.

【11】Santovito M R, Tommasi L, Sgarzi G, et al. A laser altimeter for BepiColombo mission: instrument design and performance model[J]. Planetary and Space Science, 2006, 54(7): 645-660.

【12】Araki H, Tazawa S, Noda H, et al. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry[J]. Science, 2009, 323(5916): 897-900.

【13】Kamalakar J A, Bhaskar K V S, Prasad A S L, et al. Lunar ranging instrument for Chandrayaan-1[J]. Journal of Earth System Science, 2005, 114(6): 725-731.

【14】Ji Y F, Geng L, Feng G X, et al. Progress and prospect of laser altimeter technology[J]. Laser & Infrared, 2011, 41(8): 830-833.
季云飞, 耿林, 冯国旭, 等. 激光测高技术的发展趋势[J]. 激光与红外, 2011, 41(8): 830-833.

【15】Abdalati W, Zwally H J, Bindschadler R, et al. The ICESat-2 laser altimetry mission[J]. Proceedings of the IEEE, 2010, 98(5): 735-751.

【16】Yu A W, Harding D J, Krainak M, et al. Development of an airborne lidar surface topography simulator[C]. 2011 Laser Applications to Photonic Applications, CLEO: Applications and Technology, Baltimore, 2011: 1-2.

【17】Cai H Z, Liu J Y, Fu W Y, et al. Measurement technology of time of flight based on gated microchannel plates[J]. Acta Optica Sinica, 2018, 38(2): 0204002.
蔡厚智, 刘进元, 付文勇, 等. 基于微通道板选通的飞行时间测量技术[J]. 光学学报, 2018, 38(2): 0204002.

【18】Priedhorsky W C, Smith R C, Cheng H. Laser ranging and mapping with a photon-counting detector[C].Proceedings of SPIE, 1995: 441-52.

【19】Baron M H, Priedhorsky W C. Crossed-delay line detector for ground- and space-based applications[C]. Proceedings of SPIE, 1993: 188-198.

【20】Aull B F, Marino R M. Three-dimensional imaging with arrays of Geiger-mode avalanche photodiodes[C]. Proceedings of SPIE, 2005, 6014: 60140D.

【21】Zhang G Q, Zhang Y T, Zhai X J, et al. Signal-to-noise ratio properties of multi-pixel photon counter[J]. Acta Optica Sinica, 2013, 33(3): 0304001.
张国青, 张英堂, 翟学军, 等. 多像素光子计数器的信噪比特性[J]. 光学学报, 2013, 33(3): 0304001.

【22】Shao Y, Silverman R W, Farrell R, et al. Design studies of a high resolution PET detector using APD arrays[J]. IEEE Transactions on Nuclear Science, 2000, 47(3): 1051-1057.

【23】Kataoka J, Koizumi M, Tanaka S, et al. Development of large-area, reverse-type APD-arrays for high-resolution medical imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 604(1/2): 323-326.

【24】Bai T Z, Jin W Q. Photoelectric imaging principle[M]. Beijing: Beijing Institute of Technology Press, 2013: 127-128.
白廷柱, 金伟其. 光电成像原理[M]. 北京: 北京理工大学出版社, 2013: 127-128.

【25】Vallerga J V, Siegmund O H W. 2 K×2 K resolution element photon counting MCP sensor with >200 kHz event rate capability[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 442(1/2/3): 159-163.

【26】Degnan J. Impact of receiver deadtime on photon-counting SLR and altimetry during daylight operations[C]. 16th International Workshop on Laser Ranging, 2008: 339-346.

【27】Xu Y T. Research on data processing technology of single photon laser altimetry[D]. Xi′an: Xi′an University of Science and Technology, 2017: 5-6.
许艺腾. 单光子激光测高数据处理技术研究[D]. 西安: 西安科技大学, 2017: 5-6.

【28】Chen C, Chen H Y. Time-band width products for Lorentz and super-Gaussian rectangular line-shape ultrashort pulse lasers[J]. Journal of Yangtze University(Natural Science Edition), 2013, 10(1): 10-11.
陈聪, 陈海燕. 洛伦兹与超高斯矩形超短脉冲的时间带宽积[J]. 长江大学学报(自然科学版), 2013, 10(1): 10-11.

【29】He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[C]. Miami: 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: 1956-1963.

【30】Levin A, Lischinski D, Weiss Y. A closed-form solution to natural image matting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 228-242.

引用该论文

Mi Xiaoshi,Zhao Hui,Fan Xuewu,Sheng Lizhi. Photon-Counting Laser Altimetry Based on Microchannel Plate[J]. Acta Optica Sinica, 2018, 38(12): 1228001

米小什,赵惠,樊学武,盛立志. 基于微通道板的单光子激光测高技术研究[J]. 光学学报, 2018, 38(12): 1228001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF