首页 > 论文 > 光学学报 > 38卷 > 12期(pp:1214002--1)

对比分析多种化学计量学方法在激光诱导击穿光谱土壤元素定量分析中的应用

Comparative Analysis of Multiple Chemometrics Methods in Application of Laser-Induced Breakdown Spectroscopy for Quantitative Analysis of Soil Elements

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为提高激光诱导击穿光谱技术对土壤元素检测的精度,建立了相关向量机土壤元素定量分析模型,并将该模型与已有的支持向量机模型和最小二乘支持向量机模型进行对比分析。以土壤元素Ni的4条特征谱线作为分析线,对其进行全谱归一化处理后,利用训练样品集建立相关向量机、支持向量机和最小二乘支持向量机模型。测试样品集的测试结果表明:在模型预测精度方面,支持向量机模型比另两种模型方法差;在稳定性方面,最小二乘支持向量机模型比另两种模型差。在实际应用中,相关向量机模型在稳定性及预测精度上的优势使其比另两个模型更适合用于激光诱导击穿光谱技术的定量分析中。

Abstract

In order to improve the detection accuracy of soil elements by laser induced breakdown spectroscopy (LIBS), we establish a quantitative analysis model for soil elements of relevance vector machine (RVM). And it is compared with support vector machine (SVM) model and least squares support vector machine (LSSVM) model. The four characteristic lines of Ni element are taken as the analysis lines, after full spectral normalization, RVM, SVM and LSSVM models are established with the training sample set. According to the test results of testing sample sets, we can know that the SVM is inferior to the others model in terms of model prediction accuracy. However, in terms of model stability, LSSVM model is poorer than the others models. Therefore, in the practical applications, the advantages of RVM in model stability and prediction accuracy indicate that it is more suitable for quantitative analysis of laser-induced breakdown spectroscopy.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433.4

DOI:10.3788/aos201838.1214002

所属栏目:激光器与激光光学

基金项目:浙江省自然科学基金(Y1100286)、教育部科技计划重点项目(2080656)、浙江省高校重大科技攻关项目(ZD2009006)、国家人事部留学人员科技活动项目择优资助项目

收稿日期:2018-06-08

修改稿日期:2018-07-10

网络出版日期:2018-07-20

作者单位    点击查看

应璐娜:浙江师范大学信息光学研究所, 浙江 金华 321004
周卫东:浙江师范大学信息光学研究所, 浙江 金华 321004

联系人作者:周卫东(wdzhou@zjnu.cn)

【1】DeLucia F C, Samuels A C, Harmon R S, et al. Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection[J]. IEEE Sensors Journal, 2005, 5(4): 681-689.

【2】Wang Z, Yuan T B, Hou Z Y, et al. Laser-induced breakdown spectroscopy in China[J]. Frontiers of Physics, 2014, 9(4): 419-438.

【3】Popov A M, Labutin T A, Zorov N B. Application of laser-induced breakdown spectrometry for analysis of environmental and industrial materials[J]. Moscow University Chemistry Bulletin, 2009, 64(6): 366-377.

【4】Li X F, Zhou W D, Li K X, et al. Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil[J]. Optics Communications, 2012, 285(1): 54-58.

【5】Yu Y L, Zhou W D, Qian H G, et al. Simultaneous determination of trace lead and chromium in water using laser-induced breakdown spectroscopy and paper substrate[J]. Plasma Science and Technology, 2014, 16(7): 683-687.

【6】Yuan Y, Li S Q, Yao Q. Dynamic behavior of sodium release from pulverized coal combustion by phase-selective laser-induced breakdown spectroscopy[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2339-2346.

【7】Yin W B, Zhang L, Dong L, et al. Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants[J]. Applied Spectroscopy, 2009, 63(8): 865-872.

【8】Lee T W, Hegde N. Laser-induced breakdown spectroscopy for in situ diagnostics of combustion parameters including temperature[J]. Combustion and Flame, 2005, 142(3): 314-316.

【9】Gounder J D, Kutne P, Meier W. Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 74/75: 66-73.

【10】Zhu Z H, Li J M, Guo Y M, et al. Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 205-209.

【11】Fortes F J, Moros J, Lucena P, et al. Laser-induced breakdown spectroscopy[J]. Analytical Chemistry, 2013, 85(2): 640-669.

【12】Wang J M, Yan H Y, Zheng P C, et al. Quantitative detection of nutrient elements in soil based on laser induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(11): 1111002.
王金梅, 颜海英, 郑培超, 等. 基于激光诱导击穿光谱定量检测土壤中营养元素的研究[J]. 中国激光, 2017, 44(11): 1111002.

【13】Yang W B, Li B C, Han Y L, et al. Quantitative analysis of trace oxygen concentration in argon and nitrogen based on laser-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(10): 1011001.
杨文斌, 李斌成, 韩艳玲, 等. 激光诱导击穿光谱技术定量分析氩气和氮气中的痕量氧含量[J]. 中国激光, 2017, 44(10): 1011001.

【14】Singh J P, Almirall J R, Sabsabi M, et al. Laser-induced breakdown spectroscopy (LIBS)[J]. Analytical and Bioanalytical Chemistry, 2011, 400(10): 3191-3192.

【15】Uzma G, Junaid M, Alamgir K, et al. Measurement of plasma parameters of calcium and silicon in a rock sample using laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(10): 3266-3269.

【16】Wang J S, Qiao D P, Lu Y Z, et al. Quantitative analysis of laser-induced breakdown spectroscopy in rocks by using intensity normalization method[J]. Chinese Journal of Lasers, 2010, 37(1): 225-230.
汪家升, 乔东坡, 陆运章, 等. 强度归一化法定量分析岩石激光诱导击穿光谱[J]. 中国激光, 2010, 37(1): 225-230.

【17】Pandhija S, Rai N K, Pathak A K, et al. Calibration curve with improved limit of detection for cadmium in soil: an approach to minimize the matrix effect in laser-induced breakdown spectroscopic analysis[J]. Spectroscopy Letters, 2014, 47(8): 579-589.

【18】Gu Y H, Zhao N J, Ma M J, et al. Quantitative analysis of Cr in soil with laser induced breakdown spectroscopy combined with multivariate calibration[J]. Spectroscopy and Spectral Analysis, 2016, 36(6): 1893-1898.
谷艳红, 赵南京, 马明俊, 等. LIBS技术结合多元校正定标检测土壤中的Cr[J]. 光谱学与光谱分析, 2016, 36(6): 1893-1898.

【19】Wang C L, Liu J G, Zhao N J, et al. Quantitative analysis of laser-induced breakdown spectroscopy of heavy metals in water based on support-vector-machine regression[J]. Acta Optica Sinica, 2013, 33(3): 0330002.
王春龙, 刘建国, 赵南京, 等. 基于支持向量机回归的水体重金属激光诱导击穿光谱定量分析研究[J]. 光学学报, 2013, 33(3): 0330002.

【20】Wu Y Q, Liu J, Mo X X, et al. Quantitative analysis of chromium in vegetable oil based on double pulse-laser-induced breakdown spectroscopy and least squares support vector machine[J]. Chinese Journal of Analytical Chemistry, 2016, 44(12): 1919-1926.
吴宜青, 刘津, 莫欣欣, 等. 共轴双脉冲激光诱导击穿光谱和最小二乘支持向量机法定量分析植物油中铬[J]. 分析化学, 2016, 44(12): 1919-1926.

【21】Xiang L R, Ma Z H, Zhao X Y, et al. Comparative analysis of chemometrics method on heavy metal detection in soil with laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(12): 3871-3876.
项丽蓉, 麻志宏, 赵欣宇, 等. 基于不同化学计量学方法的土壤重金属激光诱导击穿光谱定量分析研究[J]. 光谱学与光谱分析, 2017, 37(12): 3871-3876.

【22】Brabanter K, Karsmakers P, Ojeda F, et al. LS-SVMlab toolbox user′s guide[EB/OL].[2010-06-30]. https://www.esat.kuleuven.be/sista/lssvmlab/downloads/TutorialLSSVMlab1_6.pdf

引用该论文

Ying Luna,Zhou Weidong. Comparative Analysis of Multiple Chemometrics Methods in Application of Laser-Induced Breakdown Spectroscopy for Quantitative Analysis of Soil Elements[J]. Acta Optica Sinica, 2018, 38(12): 1214002

应璐娜,周卫东. 对比分析多种化学计量学方法在激光诱导击穿光谱土壤元素定量分析中的应用[J]. 光学学报, 2018, 38(12): 1214002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF