首页 > 论文 > 光学学报 > 38卷 > 12期(pp:1229002--1)

基于自相关函数重构的动态光散射偏差加权反演

Deviation-Weighted Inversion of Dynamic Light Scattering Based on Autocorrelation Function Reconstruction

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为充分利用自相关函数(ACF)衰减延迟时段的有效粒度分布信息,提出基于光强ACF重构的信息反馈式偏差加权方法,通过逐次利用偏差加权反演减小下一次偏差,直到信息偏差达到限定的最小值,即反演所得分布重构的ACF与光子相关器得到的ACF达到所要求的吻合程度。对不同噪声水平下的宽分布和近双峰分布颗粒体系模拟数据进行反演,结果表明:与常规加权反演方法相比,所提方法可以获得更准确的宽分布和近双峰分布反演结果,并具有更好的抗噪声性能。采用标准聚苯乙烯乳胶颗粒实测数据的反演结果验证了这一结论。

Abstract

An information feedback deviation-weighted method based on light intensity autocorrelation function (ACF) reconstruction is proposed to make full use of the effective particle size distribution (PSD) information in the decay section of ACF. The deviation-weighted inversion is carried out successively and the next deviation is reduced until the defined minimum information deviation is reached, that is, the distribution-reconstructed ACF obtained by inversion tends to be consistent with that obtained from the photon correlator. The inversion of the simulated data of the broad distribution and closely spaced bimodal distribution granular system at different noise levels is conducted. The results show that, compared with the routine weighting inversion methods, the proposed method can be used to obtain more accurate inversion results for the broad distribution and the closely spaced bimodal distribution and a better anti-noise performance is demonstrated, which are verified by the inversion results of the actual measurement data of standard polystyrene latex particles.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/aos201838.1229002

所属栏目:散射

基金项目:山东省自然科学基金(ZR2018MF032,ZR2018PF014,ZR2017MF009,ZR2017LF026,ZR2016EL16)

收稿日期:2018-06-14

修改稿日期:2018-08-02

网络出版日期:2018-08-13

作者单位    点击查看

徐亚南:山东理工大学电气与电子工程学院, 山东 淄博 255049
申晋:山东理工大学电气与电子工程学院, 山东 淄博 255049
徐敏:山东理工大学电气与电子工程学院, 山东 淄博 255049
吴繁言:山东理工大学电气与电子工程学院, 山东 淄博 255049
毛帅:山东理工大学电气与电子工程学院, 山东 淄博 255049
王雅静:山东理工大学电气与电子工程学院, 山东 淄博 255049
刘伟:山东理工大学电气与电子工程学院, 山东 淄博 255049
孙贤明:山东理工大学电气与电子工程学院, 山东 淄博 255049

联系人作者:申晋(shenjin@sdut.edu.cn)

【1】Pecora R. Dynamic light scattering measurement of nanometer particles in liquids[J]. Journal of Nanoparticle Research, 2000, 2(2):123-131.

【2】Shen J Q, Cai X S. Optimized inversion procedure for retrieval of particle size distributions from dynamic light-scattering signals in current detection mode[J]. Optics Letters, 2010, 35(12): 2010-2012.

【3】Liu L L, Cai X S, Zhang J, et al. Research on novel fast imaging dynamic light scattering method for nanoparticle size measurement[J]. Acta Optica Sinica, 2015, 35(5): 0529001.
刘丽丽, 蔡小舒, 张杰,等.一种纳米颗粒粒度测量的快速图像动态光散射法研究[J]. 光学学报, 2015, 35(5): 0529001.

【4】Kopple D E. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants[J]. Journal of Chemical and Physics, 1972, 57(11): 4184-4120.

【5】Mailer A G, Clegg P S, Pusey P N. Particle sizing by dynamic light scattering: non-linear cumulant analysis[J]. Journal of Physics-Condensed Matter, 2015, 27(14): 145102.

【6】Morrison I D, Grabowski E F, Herb C A. Improved techniques for particle size determination for quasielastic light scattering[J]. Langmuir, 1985, 1(4):496-501.

【7】Roig A R, Alessandrini J L. Particle size distributions from static light scattering with regularized non-negative least squares constraints[J]. Particle & Particle Systems Characterization, 2006, 23(6): 431-437.

【8】Lee H, Kim J, Lee M, et al. Estimation of particle size distribution using photon autocorrelation function from dynamic light scattering considering unknown baseline[J]. Optics Letters, 2013, 38(11): 1757-1759.

【9】Provencher S W. A constrained regularization method for inverting data represented by linear algebraic or integral equations[J]. Computer Physics Comunications, 1982, 27(3): 213-227.

【10】Ostrowsky N, Sornette D, Parker P, et al. Exponential sampling method fog light scattering polydispersity analysis[J]. Journal of Modern Optics, 1981, 28(8): 1059-1070.

【11】Wang S Q, Tao Y W, Dong X R, et al. Analysis and comparison of arithmetic for inverting particle size distribution from photon correlation spectrum[J]. China Powder Science and Technology, 2005, 11(1):27-32.
王少清, 陶冶薇, 董学仁, 等. 由光子相关谱反演微粒体系粒径分布方法的分析与比较[J]. 中国粉体技术, 2005, 11(1): 27-32.

【12】Stock R, Ray W. Interpretation of photon correlation spectroscopy data: a comparison of analysis methods[J]. Journal of Polymer Science: Polymer Physics Edition, 1985, 23(7): 1393-1447.

【13】Zhang J, Cai X S, Zhou W. Nanoparticle size distribution inversion algorithm in image dynamic light scattering[J]. Acta Optica Sinica, 2016, 36(9): 0929001.
张杰, 蔡小舒, 周骛. 图像动态光散射法纳米颗粒粒度分布反演算法研究[J]. 光学学报, 2016, 36(9): 0929001.

【14】Zhu X J, Shen J, Song L M. Accurate retrieval of bimodal particle size distribution in dynamic light scattering[J]. IEEE Photonics Technology Letters, 2016, 28(3): 311-314.

【15】Xu M, Shen J, Thomas J C, et al. Information-weighted constrained regularization for particle size distribution recovery in multiangle dynamic light scattering[J]. Optics Express, 2018, 26(1): 15-31.

【16】Xu M, Shen J, Huang Y, et al. Information character of particle size and the character weighted inversion in dynamic light scattering[J]. Acta Physica Sinica, 2018, 67(13): 134201.
徐敏, 申晋, 黄钰, 等. 基于颗粒粒度信息分布特征的动态光散射加权反演[J]. 物理学报, 2018, 67(13): 134201.

【17】Thomas J C. Photon correlation spectroscopy: technique and instrumentation[J]. Proceedings of SPIE, 1991, 1430: 2-18.

【18】Schatzel K. Correlation techniques in dynamic light scattering[J]. Applied Physics B, 1987, 42(4): 193-213.

【19】Wang Y J, Dou Z, Shen J, et al. Muti-scale inversion combining TSVD-Tikhonov regularization for dynamic light scattering[J]. Chinese Journal of Lasers, 2017, 44(1): 0104003.
王雅静, 窦智, 申晋, 等. TSVD-Tikhonov正则化多尺度动态光散射反演[J]. 中国激光, 2017, 44(1):0104003.

【20】Ling C J, Shen J Q, Wang T E. Multi-paramnter regularization algorithm in particle size measurement of forward light scattering[J]. Chinese Journal of Lasers, 2016, 43(11): 1104004.
林承军, 沈建琪, 王天恩. 前向散射颗粒粒径测量中的多参数正则化算法[J]. 中国激光, 2016, 43(11): 1104004.

【21】Hansen P C, O′Leary D P. The use of the L-curve in the regularization of discrete ill-posed problems[J]. SIAM Journal on Scientific Computing, 1993, 14(6): 1487-1503.

【22】Rezghi M, Hosseini S M. A new variant of L-curve for Tikhonov regularization[J]. Journal of Computational and Applied Mathematics, 2009, 231(2): 914-924.

【23】Frisken B J. Revisiting the method of cumulants for the analysis of dynamic light-scattering data[J]. Applied Optics, 2001, 40(24): 4087-4091.

【24】Thomas J C. The determination of log normal particle size distributions by dynamic light scattering[J]. Journal of Colloid & Interface Science, 1987, 117(1): 187-192.

引用该论文

Xu Yanan,Shen Jin,Xu Min,Wu Fanyan,Mao Shuai,Wang Yajing,Liu Wei,Sun Xianming. Deviation-Weighted Inversion of Dynamic Light Scattering Based on Autocorrelation Function Reconstruction[J]. Acta Optica Sinica, 2018, 38(12): 1229002

徐亚南,申晋,徐敏,吴繁言,毛帅,王雅静,刘伟,孙贤明. 基于自相关函数重构的动态光散射偏差加权反演[J]. 光学学报, 2018, 38(12): 1229002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF