首页 > 论文 > 光学学报 > 38卷 > 12期(pp:1215009--1)

基于机器视觉的浮选气泡体积和表面积测量研究

Research on Measurement of Volume and Surface Area of Flotation Bubbles Based on Machine Vision

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

受颗粒碰撞、机械搅拌等因素的影响,运动上升的浮选气泡会产生严重的偏转与形变。对此,提出一种用于测量气泡的体积和表面积的水平置位分割方法。建立了浮选工艺过程中运动气泡的观测系统,采集气泡图像。利用基于区域分割的边缘检测方法提取气泡边缘。针对重叠气泡,使用曲率尺度空间角点检测算法和方向链码标记凹点,以此分割重叠的轮廓,最小二乘拟合重建独立气泡的边缘。根据边缘计算气泡的偏转角度,自适应选取分割间隔。通过各分割部分的计算,累加得到气泡的体积和表面积。实验表明:所提取的边缘准确,不易受光照环境的影响。在不同搅拌速率条件下,测量气泡体积的平均误差与标准差分别为4.52%和0.057 mm3。与其他方法相比,本文方法精度较高。

Abstract

Due to the impact of particles, the mechanical agitation and other factors, the rising floatation bubbles causes severe deflection and deformation. The horizontal set partitioning method is proposed for measuring the volume and surface area of the air bubbles. First, we establish an observation system for moving bubbles during the flotation process, and collect the bubble image. We use an edge detection method based on area segmentation to extract bubble edge. For overlapping bubbles, we use curvature scale space corner detection algorithm and direction chain code to mark the pits, thereby divide the overlapping contour. The edges of independent bubbles are fitted and reconstructed by least squares. Then we calculate the deflection angle of the bubble according to the edge, and adaptively select the separation interval, and finally the volume and surface area of the bubble are obtained by the accumulation of the divided portions. Experimental results show that the edge extracted by this method is accurate and not easily affected by the light environment. Under the conditions of different agitation rates, the average error and standard deviation of the measured bubble volume are 4.52% and 0.057 mm3, which are more accurate than other methods.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/aos201838.1215009

所属栏目:机器视觉

基金项目:国家自然科学基金(51474087)

收稿日期:2018-06-15

修改稿日期:2018-07-23

网络出版日期:2018-08-13

作者单位    点击查看

梁秀满:华北理工大学电气工程学院, 河北 唐山 063210
刘文涛:华北理工大学电气工程学院, 河北 唐山 063210
牛福生:华北理工大学矿业工程学院, 河北 唐山 063210
田童:华北理工大学电气工程学院, 河北 唐山 063210

联系人作者:刘文涛(837871668@qq.com)

【1】Hassanzadeh A, Hassas B V, Kouachi S, et al. Effect of bubble size and velocity on collision efficiency in chalcopyrite flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498: 258-267.

【2】Gulden S J, Riedele C, Rollié S, et al. Online bubble size analysis in micro flotation[J]. Chemical Engineering Science, 2018, 185: 168-181.

【3】Dai Z F, Fornasiero D, Ralston J. Particle-bubble attachment in mineral flotation[J]. Journal of Colloid and Interface Science, 1999, 217(1): 70-76.

【4】Reay D, Ratcliff G A. Removal of fine particles from water by dispersed air flotation: effects of bubble size and particle size on collection efficiency[J]. The Canadian Journal of Chemical Engineering, 1973, 51(2): 178-185.

【5】Dobby G S, Finch J A. Particle size dependence in flotation derived from a fundamental model of the capture process[J]. International Journal of Mineral Processing, 1987, 21(3/4): 241-260.

【6】Yoon R H, Luttrell G H. The effect of bubble size on fine particle flotation[J]. Mineral Processing and Extractive Metallurgy Review, 1989, 5(1/2/3/4): 101-122.

【7】Lu Q H, Xu C C, Wang H, et al. Research on dimension measurement of large size ceramic floor tiles based on machine vision[J]. Acta Optica Sinica, 2013, 33(3): 0312004.
卢清华, 许重川, 王华, 等. 基于机器视觉的大幅面陶瓷地砖尺寸测量研究[J]. 光学学报, 2013, 33(3): 0312004.

【8】Yuan J T, Yang L, Wang X C, et al. Measurement and analysis of water mist droplet size based on machine vision[J]. Acta Optica Sinica, 2009, 29(10): 2842-2847.
袁江涛, 杨立, 王小川, 等. 基于机器视觉的细水雾液滴尺寸测量与分析[J]. 光学学报, 2009, 29(10): 2842-2847.

【9】Liao Y P, Wang W X. Flotation bubble delineation based on shearlet multiscale boundary detection and fusion[J]. Acta Optica Sinica, 2018, 38(3): 0315004.
廖一鹏, 王卫星. 基于Shearlet多尺度边界检测及融合的浮选气泡提取[J]. 光学学报, 2018, 38(3): 0315004.

【10】Wang H Y, Dong F. Calculation method for bubble volume in gas-liquid two-phase flow[J]. Chinese Journal of Scientific Instrument, 2009, 30(11): 2444-2449.
王红一, 董峰. 气液两相流中上升气泡体积的计算方法[J]. 仪器仪表学报, 2009, 30(11): 2444-2449.

【11】Kim Y N, Kim J S, Park G C, et al. Measurement of sliding bubble behavior on a horizontal heated tube using a stereoscopic image processing technique[J]. International Journal of Multiphase Flow, 2017, 94: 156-172.

【12】Aoyama S, Hayashi K, Hosokawa S, et al. Shapes of ellipsoidal bubbles in infinite stagnant liquids[J]. International Journal of Multiphase Flow, 2016, 79: 23-30.

【13】Zhang S J, Liu W L, Zhao S K. Flotation bubble diameter measurement and influencing factors analysis[J]. Coal Engineering, 2014, 46(12): 117-119.
张世杰, 刘文礼, 赵树凯. 浮选气泡测量及其影响因素分析[J]. 煤炭工程, 2014, 46(12): 117-119.

【14】Wen J M, Sun Q N, Sun Z N, et al. An improved image processing technique for determination of volume and surface area of rising bubble[J]. International Journal of Multiphase Flow, 2018, 104: 294-306.

【15】Liang X M, Fu D S, Niu F S, et al. A collision detection method of particle and bubble based on Otsu image segmentation[J]. China Mining Magazine, 2017, 26(6): 127-130.
梁秀满, 付董帅, 牛福生, 等. 基于Otsu图像分割的颗粒与气泡碰撞检测方法[J]. 中国矿业, 2017, 26(6): 127-130.

【16】Duan Z Y, Wang N, Zhao W H, et al. Calibration method based on lattice calibration plate in vision measurement system[J]. Acta Optica Sinica, 2016, 36(5): 0515004.
段振云, 王宁, 赵文辉, 等. 基于点阵标定板的视觉测量系统的标定方法[J]. 光学学报, 2016, 36(5): 0515004.

引用该论文

Liang Xiuman,Liu Wentao,Niu Fusheng,Tian Tong. Research on Measurement of Volume and Surface Area of Flotation Bubbles Based on Machine Vision[J]. Acta Optica Sinica, 2018, 38(12): 1215009

梁秀满,刘文涛,牛福生,田童. 基于机器视觉的浮选气泡体积和表面积测量研究[J]. 光学学报, 2018, 38(12): 1215009

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF