首页 > 论文 > 光学学报 > 38卷 > 12期(pp:1223002--1)

LED散热器三角槽扩展表面散热性能

Heat Transfer Performance of LED Radiator with Triangular Groove Extended Surface

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

对大功率LED太阳花散热器肋片三角槽扩展表面的散热性能进行了数值模拟与分析,并对肋片长度方向的温度分布进行了实验验证。在考虑自然对流和辐射模型的条件下,研究了肋片表面三角槽的顶角α、槽宽s和槽深d对散热器肋片顶部最高温升ΔTmax、平均对流换热系数h和对流换热热阻R的影响。结果表明:顶角α在90°~120°范围内、向肋片根部倾斜的三角槽在增加散热面积的同时,改善了流场分布,从而显著地增强了太阳花散热器的散热性能;相比于槽宽s,槽深d对平均对流换热系数h影响更为显著,较小或较大的槽深会因平均对流换热系数h的大幅降低而恶化散热效果。

Abstract

The heat transfer performances of a sunflower radiator with triangular groove extended surfaces for high-power LEDs are numerically simulated and analyzed. The temperature distribution in the direction of fin length is experimentally tested. Under the condition that the natural convection and radiation model is considered, the effects of apex angle α, groove width s and groove depth d on the maximum temperature rise ΔTmax at the top of fins, average convective heat transfer coefficient h and convective thermal resistance R are investigated. The results show that the existence of triangular grooves with apex angles of 90°-120° and inclining to fin root increases the heat dissipation area and also improves the fluid-flow distribution, and thus the heat transfer performances of sunflower radiator are significantly enhanced. Compared with that of groove width s, the influence of groove depth d on the average convective heat transfer coefficient h is more remarkable. A small or large groove depth deteriorates the heat transfer performance due to the significantly decreased average convective heat transfer coefficient h.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN312

DOI:10.3788/aos201838.1223002

所属栏目:光学器件

基金项目:国家重点研发计划项目(2017YFB0403200)

收稿日期:2018-06-21

修改稿日期:2018-08-06

网络出版日期:2018-08-13

作者单位    点击查看

田红:中国科学院工程热物理研究所, 北京 100190
胡学功:中国科学院工程热物理研究所, 北京 100190
王际辉:中国科学院工程热物理研究所, 北京 100190

联系人作者:胡学功(xuegonghu@iet.cn)

【1】Schubert E F, Kim J K. Solid-state light sources getting smart[J]. Science, 2005, 308(5726): 1274-1278.

【2】Cheng T, Luo X B, Huang S Y, et al. Thermal analysis and optimization of multiple LED packaging based on a general analytical solution[J]. International Journal of Thermal Sciences, 2010, 49(1): 196-201.

【3】Petroski J. Thermal challenges facing new-generation light-emitting diodes (LEDs) for lighting applications[C]. Solid State Lighting II. International Society for Optics and Photonics, 2002, 4776: 215-223.

【4】Chang M H, Das D, Varde P V, et al. Light emitting diodes reliability review[J]. Microelectronics Reliability, 2012, 52(5): 762-782.

【5】Chen Y C, Wen S S, Wu Y X. Thermal analysis for LED chip on board package based on plastic radiator without substrate[J]. Acta Optica Sinica, 2013, 33(8): 0823005.
陈颖聪, 文尚胜, 吴玉香. 基于塑料散热器无基板板上芯片封装的LED热分析[J]. 光学学报, 2013, 33(8): 0823005.

【6】Tian L X, Wen S S, Yao R H, et al. Research on the heat-release performance of high power LED using slotted plate[J]. Acta Optica Sinica, 2014, 34(11): 1123002.
田立新, 文尚胜, 姚日晖, 等. 基于开缝基板的大功率 LED 散热性能研究[J]. 光学学报, 2014, 34(11): 1123002.

【7】Dialameh L, Yaghoubi M, Abouali O. Natural convection from an array of horizontal rectangular thick fins with short length[J]. Applied Thermal Engineering, 2008, 28(17/18): 2371-2379.

【8】Kim D K. Thermal optimization of plate-fin heat sinks with fins of variable thickness under natural convection[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 752-761.

【9】Tian L X, Wen S S, Huang W M, et al. Study on the heat sink structure and heat transfer effect of liquid cooling system for high power LEDs[J]. Acta Optica Sinica, 2015, 35(3): 0323003.
田立新, 文尚胜, 黄伟明, 等. 大功率LED液冷热沉结构与换热效果研究[J]. 光学学报, 2015, 35(3): 0323003.

【10】Feng S S, Shi M, Yan H B, et al. Natural convection in a cross-fin heat sink[J]. Applied Thermal Engineering, 2018, 132: 30-37.

【11】Li B, Byon C. Experimental and numerical study on the heat sink with radial fins and a concentric ring subject to natural convection[J]. Applied Thermal Engineering, 2015, 90: 345-351.

【12】Tang F, Wang D, Guo Z N. Design and experiment of special-shaped LED lamp with honeycomb radiator[J]. Laser & Optoelectronics Progress, 2017, 54(6): 062301.
唐帆, 王丹, 郭震宁. LED异形灯蜂巢散热器设计与实验[J]. 激光与光电子学进展, 2017, 54(6): 062301.

【13】Tang F, Guo Z N. Design and experiment of LED cylindric sunflower radiator[J]. Laser & Optoelectronics Progress, 2017, 54(9): 092303.
唐帆, 郭震宁. LED圆筒太阳花散热器设计与实验[J]. 激光与光电子学进展, 2017, 54(9): 092303.

【14】Jang D, Yook S J, Lee K S. Optimum design of a radial heat sink with a fin-height profile for high-power LED lighting applications[J]. Applied Energy, 2014, 116: 260-268.

【15】Hou L, Chen H, Zhou X L. Design and optimization of a new type LED lamp radiator based on thermal conductive plastics[J]. Chinese Journal of Luminescence, 2016, 37(9): 1103-1108.
侯绿, 陈华, 周兴林. 基于导热塑料的新型LED灯散热器设计与优化[J]. 发光学报, 2016, 37(9): 1103-1108.

【16】Wei X N. Development of new high-power LED lamp heat sink and thermal characteristic analysis[D]. Shandong: Shandong University, 2014: 37-39.
韦香妮. 新型大功率LED灯散热器开发及散热特性研究[D]. 山东: 山东大学, 2014: 37-39.

【17】Kwak D B, Noh J H, Lee K S, et al. Cooling performance of a radial heat sink with triangular fins on a circular base at various installation angles[J]. International Journal of Thermal Sciences, 2017, 120: 377-385.

【18】Kwak D B, Kwak H P, Noh J H, et al. Optimization of the radial heat sink with a concentric cylinder and triangular fins installed on a circular base[J]. Journal of Mechanical Science and Technology, 2018, 32(1): 505-512.

【19】Tang F, Guo Z N. Slotted and staggered design of LED sunflower radiator[J]. Acta Optica Sinica, 2018, 38(1): 0123001.
唐帆, 郭震宁. LED太阳花散热器开缝交错设计[J]. 光学学报, 2018, 38(1): 0123001.

【20】Wang L X, Yu B, Shen Z J, et al. Optimization design of LED lamp with heat pipe radiator[J]. Electronic Design Engineering, 2016, 24(10): 108-110.
王林习, 虞斌, 沈中将, 等. LED路灯热管散热器翅片开缝优化设计[J]. 电子设计工程, 2016, 24(10): 108-110.

【21】Shen Q, Sun D, Xu Y, et al. Orientation effects on natural convection heat dissipation of rectangular fin heat sinks mounted on LEDs[J]. International Journal of Heat and Mass Transfer, 2014, 75: 462-469.

【22】Tao W Q. Numerical heat transfer[M]. 2nd ed. Xi’An: Xi’An Jiaotong University Press, 2001: 241-244.
陶文铨. 数值传热学[M]. 第二版. 西安: 西安交通大学出版社, 2001: 241-244.

【23】Hu X G, Yan X H, Zhao Y H. Application of micro capillary groove evaporator to electronic chip cooling[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(3): 412-416.
胡学功, 颜晓虹, 赵耀华. 微槽群蒸发器在电子芯片冷却方面的应用[J]. 化工学报, 2005, 56(3): 412-416.

【24】Zhao Y H, Liu J R, Diao Y H, et al. An experimental investigation on heat transfer characteristics for micro capillary evaporator[J]. Journal of Engineering Thermophysics, 2008, 29(5): 825-827.
赵耀华, 刘建荣, 刁彦华, 等. 微槽群相变散热器传热性能的实验研究[J]. 工程热物理学报, 2008, 29(5): 825-827.

【25】Xiang J H, Zhang C L, Chen S, et al. Numerical optimization of phase-change radiator for high-power LED[J]. Journal of Guangzhou University (Natural Science Edition), 2015, 14(2): 61-65.
向建化, 张春良, 陈胜, 等. 大功率LED太阳花相变散热器数值优化研究[J]. 广州大学学报(自然科学版), 2015, 14(2): 61-65.

引用该论文

Tian Hong,Hu Xuegong,Wang Jihui. Heat Transfer Performance of LED Radiator with Triangular Groove Extended Surface[J]. Acta Optica Sinica, 2018, 38(12): 1223002

田红,胡学功,王际辉. LED散热器三角槽扩展表面散热性能[J]. 光学学报, 2018, 38(12): 1223002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF