首页 > 论文 > 光学学报 > 38卷 > 12期(pp:1212003--1)

星载全球电离层与大气驱动力耦合临边观测远紫外成像光谱仪

Far Ultraviolet Imaging Spectrometer for Space-Borne Global Ionosphere and Atmospheric Driver Connection Limb Observation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了一种星载太阳同步轨道远紫外成像光谱仪,以满足对低层大气驱动力与电离层之间耦合作用探测的科学需求。仪器拟采用双侧向临边探测方法,对电离层中在远紫外波段产生昼夜不同特征辐射的各种粒子的光谱辐射强度进行探测,进而定量获取低层大气驱动力的影响。根据探测机理,进行了仪器系统观测方案设计、仪器性能参数与系统设计、原理样机系统集成、性能测试和地面辐射定标等研究,该研究为我国未来电离层远紫外成像光谱探测提供一种思路。

Abstract

A space-borne far ultraviolet imaging spectrometer working at the sun-synchronous orbit is studied, which is used to satisfy the scientific requirements of the connection and coupling detection between the low atmospheric driver and ionosphere. The instrument is designed to detect the spectral intensities of various particles in the ionosphere, which produce the characteristic radiation different at day and night in the far ultraviolet band, by the two-side lateral limb observation method. Then the influence of the low atmospheric driver is further acquired quantitatively. According to the detection mechanism, the observation scheme for instrument system is designed, the instrument performance parameters and system design, integration of prototype system, performance test, ground radiation calibration, and others are investigated. This research provides a new way in the future far ultraviolet imaging spectral observation of the ionosphere.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433.1;TH744.1

DOI:10.3788/aos201838.1212003

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金(41504143)、中国科学院科研装备研制项目(YJKYYQ20170048)、中国科学院青年创新促进会人才项目(2016203)

收稿日期:2018-06-25

修改稿日期:2018-08-13

网络出版日期:2018-08-28

作者单位    点击查看

于磊:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
陈结祥:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
薛辉:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031

联系人作者:于磊(top1gods@mail.ustc.edu.cn)

【1】Robert P M. Space weather comes of age-new sensors and models for ionospheric specification and forecast[J]. Proceeding of the SPIE, 2004, 5548: 341-347.

【2】Ridley A J, Deng Y, Tóth G. The global ionosphere-thermosphere model[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68(8): 839-864.

【3】Zhang Y L, Paxton L J, Kil H. Nightside midlatitude ionospheric arcs: TIMED/GUVI observations[J]. Journal of Geophysical Research: Space Physics, 2013, 118(6): 3584-3591.

【4】Song J. Research on applications of backscatter ionospheric sounding techniques[D]. Wuhan: Wuhan University, 2011.
宋君. 返回式电离层探测技术应用研究[D]. 武汉: 武汉大学, 2011.

【5】Lin J, Wu Y, Liu J N. Research on ionospheric inversion of GPS occultation[J]. Chinese Journal of Geophysics, 2009, 52(8): 1947-1953.
林剑, 吴云, 刘经南. 电离层GPS掩星反演技术研究[J]. 地球物理学报, 2009, 52(8): 1947-1953.

【6】Yu L, Wang S R, Lin G Y. Review of space-based imaging spectrum technique development for ionosphere observations[J]. Progress in Geophysics, 2012, 27(6): 2308-2315.
于磊, 王淑荣, 林冠宇. 星载电离层探测成像光谱技术发展综述[J]. 地球物理学进展, 2012, 27(6): 2308-2315.

【7】Denis A E, Thomas S P, Aumann H. The impact of the AIRS spatial response on channel-to-channel and multi-instrument data analyses[J]. Proceeding of the SPIE, 2006, 6296: 62960I.

【8】Sotirelis T, Korth H, Hsieh S Y, et al. Empirical relationship between electron precipitation and far-ultraviolet auroral emissions from DMSP observations[J]. Journal of Geophysical Research: Space Physics, 2013, 118(3): 1203-1209.

【9】Paxton L J, Meng C I, Fountain G H, et al. SSUSI: Horizon to horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters[J]. Proceeding of the SPIE, 1992, 1764: 161-175.

【10】Kil H, Lee W K, Shim J, et al. The effect of the 135.6 nm emission originated from the ionosphere on the TIMED/GUVI O/N2 ratio[J]. Journal of Geophysical Research: Space Physics, 2013, 118(2): 859-865.

【11】Loicq J, Kintziger C, Mazzoli A, et al. Optical design and optical properties of a VUV spectrographic imager for ICON mission[J]. Proceeding of the SPIE, 2016, 9905: 990509.

【12】Eastes R W, McClintock W E, Codrescu M V, et al. Global-scale observations of the limb and disk (GOLD): new observing capabilities for the ionosphere-thermosphere[M]∥Eastes R W, McClintock W E, Codrescu M V, et al. eds. Midlatitude Ionospheric Dynamics and Disturbances. Washington: American Geophysical Union, 2008: 319-326.

【13】Baker D J. Rayleigh, the unit for light radiance[J]. Applied Optics, 1974, 13(9): 2160-2163.

【14】Yu L, Wang S R, Qu Y, et al. Broadband FUV imaging spectrometer: advanced design with a single toroidal uniform-line-space grating[J]. Applied Optics, 2011, 55(22): 4468-4477.

【15】Yu L, Lin G Y, Yu X Y. Optical system of far ultraviolet imaging spectrometer for space-based upper atmosphere remote sensing[J]. Acta Optica Sinica, 2013, 33(1): 0122001.
于磊, 林冠宇, 于向阳. 空间高层大气遥感远紫外成像光谱仪的光学系统[J]. 光学学报, 2013, 33(1): 0122001.

【16】Yu L, Lin G Y, Chen B. Study on the absolute spectral irradiation calibration method for far ultraviolet spectrometer in remote sensing[J]. Spectroscopy and Spectral Analysis, 2013, 33(1): 246-249.
于磊, 林冠宇, 陈斌. 大气遥感远紫外光谱仪绝对光谱辐照度响应度定标方法研究[J]. 光谱学与光谱分析, 2013, 33(1): 246-249.

引用该论文

Yu Lei,Chen Jiexiang,Xue Hui. Far Ultraviolet Imaging Spectrometer for Space-Borne Global Ionosphere and Atmospheric Driver Connection Limb Observation[J]. Acta Optica Sinica, 2018, 38(12): 1212003

于磊,陈结祥,薛辉. 星载全球电离层与大气驱动力耦合临边观测远紫外成像光谱仪[J]. 光学学报, 2018, 38(12): 1212003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF