首页 > 论文 > 光学学报 > 38卷 > 12期(pp:1223001--1)

矩孔光子晶体可见光谱段窄带偏振陷波研究

Narrow-Band Polarization Notch Filtering of Visible Light Spectra Based on Photonic Crystal with Periodic Rectangular Holes

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种可见光谱段内窄带偏振陷波滤波的矩孔光子晶体结构。通过建立矩孔光子晶体模型,将矩孔光子晶体结构等效为介质层-光栅层-介质层周期结构,利用Rugate滤波理论对矩孔光子晶体结构进行分析,结合等效介质理论(EMT)和传输矩阵方法(TMM)对结构模型的入射光s偏振、p偏振的透过率进行仿真。另外讨论了矩孔光子晶体纵向周期数m、光栅层填充比f、厚度d等参数对偏振陷波的中心波长、带宽以及截止带透过率的影响。针对417,497,582,685 nm中心波长,设计带宽为10 nm的p偏振窄带陷波结构,并用时域有限差分方法(FDTD)进行仿真验证,结果表明,矩孔阵列结构可以实现可见光谱段内窄带偏振陷波滤波。

Abstract

A novel photonic crystal (PC) structure with periodic rectangular holes is proposed to realize the narrow-band polarization notch filtering of visible lights. This PC structure is equivalent to a periodic structure with a dielectric-grating-dielectric layer in the PC structure model. The PC structure is first analyzed by the Rugate filtering theory and then the equivalent medium theory (EMT) and the transmission matrix method (TMM) are combined to simulate the transmittances of lights with s and p polarizations. The effects of the parameters, such as longitudinal period number m, filling ratio of grating layers f and thickness d of this PC structure, on the central wavelength, band width and transmittance in the cut-off zone for polarization notch filtering are also discussed. As for the central wavelengths of 417, 497, 582, 685 nm, a p-polarization notch filtering structure with a band width of 10 nm is designed, which is tested by the simulation with the finite difference time domain (FDTD) method. The results show that the PC structure with periodic rectangular holes can be used to realize the narrow-band polarization notch filtering of visible lights.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/aos201838.1223001

所属栏目:光学器件

基金项目:国家自然科学基金(11474037)、吉林省自然科学基金(2013101032JC)

收稿日期:2018-06-29

修改稿日期:2018-07-21

网络出版日期:2018-07-25

作者单位    点击查看

朱启凡:长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022长春理工大学光电工程学院, 吉林 长春 130022
付跃刚:长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022长春理工大学光电工程学院, 吉林 长春 130022
刘智颖:长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022长春理工大学光电工程学院, 吉林 长春 130022

联系人作者:付跃刚(fuyg@cust.edu.cn); 朱启凡(18584369262@163.com);

【1】Gong X, Hang L X, Huang F B. Preparation technology of 1550 nm notch filter[J]. Journal of Applied Optics, 2016, 37(1): 118-123.
龚勋, 杭凌侠, 黄发彬. 1550 nm陷波滤光片制备工艺技术研究[J]. 应用光学, 2016, 37(1): 118-123.

【2】Liu F Y, Wu X M, Zhang Y S, et al. Film coating for narrow-band negative filter[J]. Infrared and Laser Engineering, 2006, 35(s2): 188-190.
刘凤玉, 吴晓鸣, 张元生, 等. 窄带负滤光片膜层的制备[J]. 红外与激光工程, 2006, 35(s2): 188-190.

【3】Gao P, Yin X J, Zhao S F, et al. Notch filter designed by a quasi-rugate method[J]. Optical Instruments, 2013, 35(6): 82-90.
高鹏, 阴晓俊, 赵帅锋, 等. 陷波滤光片的类褶皱设计[J]. 光学仪器, 2013, 35(6): 82-90.

【4】Xue P, Wang Z B, Zhang R, et al. Highly efficient measurement technology based on hyper-spectropolarimetric imaging[J]. Chinese Journal of Lasers, 2016, 43(8): 0811001.
薛鹏, 王志斌, 张瑞, 等. 高光谱全偏振成像快捷测量技术研究[J]. 中国激光, 2016, 43(8): 0811001.

【5】Wang X L, Wang F, Liu X, et al. Hyperspectral polarization characteristics of typical camouflage target under desert background[J]. Laser & Optoelectronics Progress, 2018, 55(5): 0511011.
王小龙, 王峰, 刘晓, 等. 荒漠背景下典型伪装目标的高光谱偏振特性[J]. 激光与光电子学进展, 2018, 55(5): 0511011.

【6】Wu Z H, Sun M S, Wang Q, et al. Photoacoustic microscopy image resolution enhancement via directional total variation regularization[J]. Chinese Optics Letters, 2014, 12(12): 121701-121705.

【7】Kraus J, Lyngnes O. Design of optical notch filters using apodized thickness modulation[J]. Applied Optics, 2014, 53(4): A21-A26.

【8】Bovard B G. Rugate filter theory: an overview[J]. Applied Optics, 1993, 32(28): 5427-5442.

【9】Aguayo-Ríos F, Villa-Villa F, Gaspar-Armenta J A. Dichroic rugate filters[J]. Applied Optics, 2006, 45(3): 495-500.

【10】Huang H, Winchester K J, Suvorova A, et al. Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films[J]. Materials Science & Engineering A, 2006, 435(6): 453-459.

【11】Swart P L, Bulkin P V, Lacquet B M. Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx[J]. Optical Engineering, 1997, 36(4): 1214-1219.

【12】Zhu H F, Song L K, Zheng C H, et al. Study of light intensity transmission of crystal polarizing prisms[J]. Acta Photonica Sinica, 2004, 33(2): 204-207.
朱化凤, 宋连科, 郑春红, 等. 晶体偏光棱镜光强透射比研究[J]. 光子学报, 2004, 33(2): 204-207.

【13】Zhang Z G, Dong F L, Zhang Q C, et al. Fabrication of pixelated polarizer array and its application in polarization enhancement[J]. Acta Physica Sinica, 2014, 63(18): 184204.
张志刚, 董凤良, 张青川, 等. 像素偏振片阵列制备及其在偏振图像增强中的应用[J]. 物理学报, 2014, 63(18): 184204.

【14】Gruev V, Perkins R, York T. CCD polarization imaging sensor with aluminum nanowire optical filters[J]. Optics Express, 2010, 18(18): 19087-19094.

【15】Kim J H, Cho Y T, Jung Y G. Selection of absorptive materials for non-reflective wire grid polarizers[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(7): 903-908.

【16】Li M Y, Gu P F. Optimal design of two-dimensional photonic crystal polarization splitters[J]. Acta Physica Sinica, 2005, 54(5): 2358-2363.
李明宇, 顾培夫. 光子晶体偏振分光镜的优化设计[J]. 物理学报, 2005, 54(5): 2358-2363.

【17】Luo J, Liu D, Xu P T, et al. High-precision polarizing beam splitting system based on polarizing beam splitter[J]. Chinese Journal of Lasers, 2016, 43(12): 1210001.
罗敬, 刘东, 徐沛拓, 等. 基于偏振分光棱镜的高精度偏振分光系统[J]. 中国激光, 2016, 43(12): 1210001.

【18】Gruev V, Ortu A, Lazarus N, et al. Fabrication of a dual-tier thin film micropolarization array[J]. Optics Express, 2007, 15(8): 4994-5007.

【19】Kulkarni M, Gruev V. Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters[J]. Optics Express, 2012, 20(21): 22997-23012.

【20】Zhang X X, Chen H M. Design and performance analysis of photonic crystal polarizing beam splitter[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011301.
张信祥, 陈鹤鸣. 光子晶体偏振分束器的设计与性能分析[J]. 激光与光电子学进展, 2017, 54(1): 011301.

【21】Lin M, Qiu W B, Xi X, et al. Polarization selective power splitters for TE and TM waves based on two-dimensional photonic crystals[J]. Acta Optica Sinica, 2016, 36(12): 1223001.
林密, 邱文标, 郗翔, 等. 基于二维光子晶体的偏振选择TE/TM波功率分配器[J]. 光学学报, 2016, 36(12): 1223001.

【22】Zhang J K, Zhao D P, Wang J C, et al. Thermal infrared pattern painting based on photonic crystals[J]. Acta Optica Sinica, 2016, 36(12): 1216001.
张继魁, 赵大鹏, 汪家春, 等. 基于光子晶体的热红外迷彩[J]. 光学学报, 2016, 36(12): 1216001.

【23】Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062.

【24】Joannopoulos J D, Villeneuve P R, Fan S H. Photonic crystals: putting a new twist on light[J]. Nature, 1997, 386(6621): 143-149.

【25】Michael A, Hafiz A A, Puzzer T, et al. Deposition and characterization of thick graded index SixOyFz films with low stress[J]. Sensors and Actuators A: Physical, 2012, 178(4): 110-117.

【26】Lalanne P. Effective medium theory applied to photonic crystals composed of cubic or square cylinders[J]. Applied Optics, 1996, 35(27): 5369-5380.

【27】Lalanne P, Lemercler-Lalanne D. On the effective medium theory of subwavelength periodic structures[J]. Journal of Modern Optics, 1996, 43(10): 2063-2085.

【28】Campbell G, Kostuk R K. Effective-medium theory of sinusoidally modulated volume holograms[J]. Journal of the Optical Society of America A, 1995, 12(5): 1113-1117.

【29】Wang Q Y, Qi H J, He H B, et al. Design and manufacture of birefringent non-polarizing thin films[J]. Acta Optica Sinica, 2010, 30(7): 2154-2158.
王晴云, 齐红基, 贺洪波, 等. 双折射消偏振膜的设计和制备[J]. 光学学报, 2010, 30(7): 2154-2158.

引用该论文

Zhu Qifan,Fu Yuegang,Liu Zhiying. Narrow-Band Polarization Notch Filtering of Visible Light Spectra Based on Photonic Crystal with Periodic Rectangular Holes[J]. Acta Optica Sinica, 2018, 38(12): 1223001

朱启凡,付跃刚,刘智颖. 矩孔光子晶体可见光谱段窄带偏振陷波研究[J]. 光学学报, 2018, 38(12): 1223001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF