首页 > 论文 > 光学学报 > 38卷 > 12期(pp:1206006--1)

内嵌矩形金属块纳米圆盘结构等离子体多通道波分复用器研究

A Plasmon Multi-Channel Wavelength-Division Multiplexer Constructed with a Nanodisk Structure Embedded in a Rectangular Metal Block

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种内嵌矩形金属块纳米圆盘结构,利用该结构形成的法布里-珀罗腔来加强表面等离激元的耦合作用。该结构具有窄带宽高品质因子的滤波性能,可通过多腔耦合形成多通道波分复用器。采用时域有限差分方法讨论有无内嵌矩形金属块和金属块的横纵向宽度及耦合距离对强透射现象的影响,并根据其透射特性实现多通道波分复用器。研究发现,当圆盘谐振器内嵌矩形金属块后,滤波器具有较好的强透射现象,其半峰全宽显著降低,品质因子增加;通过耦合多个内嵌矩形金属块圆盘谐振器构建的等离子多通道波分复用器,可实现双通道及三通道解复用功能,各信道共振波长可通过谐振腔内嵌的金属块参数来调整,传输效率可达到70%,最小插入损耗为1.549 dB,平均工作范围为189 nm,且不存在相邻信道串扰。这说明该结构具有较好的解复用分频特性。

Abstract

This study aims to propose a nanodisk structure embedding a rectangular metal block. The Fabry-Perot cavity formed by this structure is used to enhance the coupling effect of the surface plasmons. The structure has a narrow bandwidth, high quality factor, and high filtering performance. Herein, a multi-channel wavelength-division multiplexer is constructed by multiple cavities coupling. The influence of the horizontal and vertical widths of the rectangular metal block and the coupling distances between the embedded disk and rectangular metal block on the transmission characteristics of the device is described with the time-domain finite-difference method, for which a device without embedded rectangular metal block is used as the control group. A multi-channel wavelength division multiplexer is realized according to its transmission characteristics. The filter shows strong transmission characteristics when the disk resonance filter is embedded in the rectangular metal block; its full width at half maximum is significantly reduced and the quality factor is increased. By coupling a number of inline rectangular-metal-block/disk resonators, we construct the filter. Such plasmon multi-channel wavelength-division multiplexers can provide two- and three-channel demultiplexing functions. The resonant wavelength of each channel can be adjusted by selection of the parameters of the embedded metal block in the resonator, the transmission efficiency can reach up to 70%, and the minimum insertion loss is 1.549 dB. The average operating range is 189 nm, and there is no adjacent-channel crosstalk. We demonstrate that the proposed structure has good de-multiplexing frequency characteristics.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN252

DOI:10.3788/aos201838.1206006

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61465004,61765004)、广西自然科学基金项目(2017GXNSFAA198164,2016GXNSFAA380006)、桂林电子科技大学研究生教育创新计划项目(2017YJCX41)、广西精密导航技术与应用重点实验室基金项目(DH201804,DH201703)

收稿日期:2018-07-04

修改稿日期:2018-07-29

网络出版日期:2018-08-13

作者单位    点击查看

肖功利:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004广西信息科技实验中心, 广西 桂林 541004
徐俊林:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
杨宏艳:桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004
韦清臣:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
窦婉滢:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
杨秀华:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
李海鸥:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
张法碧:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
孙堂友:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004

联系人作者:肖功利(xgl.hy@126.com)

【1】Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

【2】Wang X, Wang P, Chen C, et al. Active modulation of plasmonic signal with a subwavelength metal/nonlinear dielectric material/metal structure[J]. Chinese Optics Letters, 2010, 8(6): 584-587.

【3】Li X, Tan Q, Bai B, et al. Tunable directional beaming assisted by asymmetrical SPP excitation in a subwavelength metallic double slit[J]. Chinese Optics Letters, 2012, 10(5): 052401.

【4】Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding[J]. Nature Photonics, 2007, 1(11): 641-648.

【5】Maier S A, Kik P G, Atwater H A, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides[J]. Nature Materials, 2003, 2(4): 229-232.

【6】Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193.

【7】Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91.

【8】Zhao H W, Huang X G, Huang J T. Surface plasmon polaritons based optical directional coupler[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51(12): 1877-1882.

【9】Hossieni A, Massoud Y. A low-loss metal-insulator-metal plasmonic Bragg reflector[J]. Optics Express, 2006, 14(23): 11318-11323.

【10】Wang T B, Wen X W, Yin C P, et al. The transmission characteristics of surface plasmon polaritons in ring resonator[J]. Optics Express, 2009, 17(26): 24096-24101.

【11】Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083): 508-511.

【12】Xiao G L, Liu X G, Yang H Y, et al. Refractive index sensing property based on extraordinary optical transmission of metal circular arc hole array[J]. Acta Optica Sinica, 2018, 38(2): 0224001.
肖功利, 刘小刚, 杨宏艳, 等. 基于金属圆弧孔阵列强透射的折射率传感特性[J]. 光学学报, 2018, 38(2): 0224001.

【13】Wu D Q, Huang C, Yang W F. Improvement on pH sensing properties based on surface treatment of graphene plasma[J]. Laser and Optoelectronics Progress, 2017, 54(1): 012401.
吴冬芹, 黄翀, 杨玮枫. 基于石墨烯等离子体表面处理改善pH传感特性的研究[J]. 激光与光电子学进展, 2017, 54(1): 012401.

【14】Lin X S, Huang X G. Tooth-shaped plasmonic waveguide filters with nanometeric sizes[J]. Optics Letters, 2008, 33(23): 2874-2876.

【15】Lin X S, Huang X G. Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter[J]. Journal of the Optical Society of America B, 2009, 26(7): 1263-1268.

【16】Tao J, Huang X G, Lin X S, et al. A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure[J]. Optics Express, 2009, 17(16): 13989-13994.

【17】Tao J, Huang X G, Lin X S, et al. Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters[J]. Journal of the Optical Society of America B, 2010, 27(2): 323-327.

【18】Xiao G L, Liu L, Yang H Y, et al. Light transmission characteristics of metal curved waveguide based on microcavity coupling structures[J]. Acta Optica Sinica, 2017, 37(12): 1213001.
肖功利, 刘利, 杨宏艳, 等. 基于微腔耦合结构金属弯曲波导的光透射特性[J]. 光学学报, 2017, 37(12): 1213001.

【19】Yu N F, Blanchard R, Fan J, et al. Quantum cascade lasers with integrated plasmonic antenna-array collimators[J]. Optics Express, 2008, 16(24): 19447-19461.

【20】Yu N, Wang Q J, Pflügl C, et al. Semiconductor lasers with integrated plasmonic polarizers[J]. Applied Physics Letters, 2009, 94(15): 151101.

【21】Yu N F, Kats M A, Pflügl C, et al. Multi-beam multi-wavelength semiconductor lasers[J]. Applied Physics Letters, 2009, 95(23): 239901.

【22】Yu N F, Wang Q J, Kats M A, et al. Designer spoof surface plasmon structures collimate terahertz laser beams[J]. Nature Materials, 2010, 9(9): 730-735.

【23】Hu F F, Zhou Z P. Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities[J]. Journal of the Optical Society of America B, 2011, 28(10): 2518-2523.

【24】Azar M T H, Zavvari M, Arashmehr A, et al. Design of a high-performance metal-insulator-metal plasmonic demultiplexer[J]. Journal of Nanophotonics, 2017, 11(2): 026002.

【25】Zhan S P, Li H J, Cao G T, et al. Theoretical analysis of plasmon-induced transparency in ring-resonators coupled channel drop filter systems[J]. Plasmonics, 2014, 9(6): 1431-1437.

【26】Hu F F, Yi H X, Zhou Z P. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities[J]. Optics Letters, 2011, 36(8): 1500-1502.

【27】Tao J, Huang X G, Zhu J H. A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators[J]. Optics Express, 2010, 18(11): 11111-11116.

【28】Kaminow I P, Mammel W L, Weber H P. Metal-clad optical waveguides: analytical and experimental study[J]. Applied Optics, 1974, 13(2): 396-405.

【29】Ruan Z C, Qiu M. Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances[J]. Physical Review Letters, 2006, 96(23): 233901.

【30】Rakic A D, Djurisic A B, Elazar J M, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices[J]. Applied Optics, 1998, 37(22): 5271-5283.

【31】Kaminow I P, Mammel W L, Weber H P. Metal-cad optical waveguides: analytical and experimental study[J]. Applied Optics, 1974, 13(2): 396-405.

【32】Wang B, Wang G P. Plasmon Bragg reflectors and nanocavities on flat metallic surfaces[J]. Applied Physics Letters, 2005, 87(1): 013107.

【33】Haynes C L, van Duyne R P. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics[J]. The Journal of Physical Chemistry B, 2001, 105(24): 5599-5611.

【34】Lu H, Liu X M, Mao D, et al. Tunable band-pass plasmonic waveguide filters with nanodisk resonators[J]. Optics Express, 2010, 18(17): 17922-17927.

【35】Beatty R W. Insertion loss concepts[J]. Proceedings of the IEEE, 1964, 52(6): 663-671.

引用该论文

Xiao Gongli,Xu Junlin,Yang Hongyan,Wei Qingchen,Dou Wanying,Yang Xiuhua,Li Haiou,Zhang Fabi,Sun Tangyou. A Plasmon Multi-Channel Wavelength-Division Multiplexer Constructed with a Nanodisk Structure Embedded in a Rectangular Metal Block[J]. Acta Optica Sinica, 2018, 38(12): 1206006

肖功利,徐俊林,杨宏艳,韦清臣,窦婉滢,杨秀华,李海鸥,张法碧,孙堂友. 内嵌矩形金属块纳米圆盘结构等离子体多通道波分复用器研究[J]. 光学学报, 2018, 38(12): 1206006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF