首页 > 论文 > 光学学报 > 38卷 > 12期(pp:1211002--1)

相对平行直线扫描计算机分层成像研究

Study of Parallel Translation Computed Laminography Imaging

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在大尺寸板状构件成像方面,计算机分层成像(CL)系统具有独特优势。提出并研究了相对平行直线扫描计算机分层成像(PTCL)系统,应用三维解析重建(FDK)算法对该系统进行了图像重建。受制于探测器尺寸,该系统只能采集物体感兴趣区域投影,因此引入基于图像全变差最小化的同时代数迭代重建(SART+TV)算法对物体进行成像。数值仿真实验和实际实验研究表明,FDK和本文算法均能实现系统图像重建,相比于FDK算法,本文算法能从截断的感兴趣区域获得高质量的重建图像。从而验证了系统的可行性。

Abstract

The computed laminography (CL) system has a unique advantage in aspects of large and plate-like objects imaging. We propose the parallel translation computed laminography (PTCL) system. Then, aiming at the image reconstruction of the system, the Feldkamp, Davis and Kress (FDK) algorithm is applied in the system. Due to the limited size of the detector, the system can only collect the projections of the region of interest of the object and the the total variation minimization based simultaneous algebraic reconstruction technique (SART+TV) algorithm is introduced into the object imaging. The simulation and experimental results demonstrate that both FDK and proposed method can achieve image reconstruction for PTCL. Compared with the FDK algorithm, the proposed method can reconstruct high-quality images from truncated and region of interest projections. Furtherly, it also demonstrates the feasibility of the system.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/aos201838.1211002

所属栏目:成像系统

基金项目:国家自然科学基金(61471070)、国家重大仪器开发专项(2013YQ030629)

收稿日期:2018-07-13

修改稿日期:2018-07-30

网络出版日期:2018-08-13

作者单位    点击查看

王少宇:重庆大学光电技术及系统教育部重点实验室, 重庆 400044重庆大学工业CT无损检测教育部工程研究中心, 重庆 400044
伍伟文:重庆大学光电技术及系统教育部重点实验室, 重庆 400044重庆大学工业CT无损检测教育部工程研究中心, 重庆 400044
龚长城:重庆大学光电技术及系统教育部重点实验室, 重庆 400044重庆大学工业CT无损检测教育部工程研究中心, 重庆 400044
刘丰林:重庆大学光电技术及系统教育部重点实验室, 重庆 400044重庆大学工业CT无损检测教育部工程研究中心, 重庆 400044

联系人作者:刘丰林(liufl@cqu.edu.cn)

【1】Gondrom S, Schropfer S. Digital computed laminography and tomosynthesis-functional principles and industrial applications[J]. Journal of Nondestructive Testing & Ultrasonics(Germany), 1999, 7(2): 75-81.

【2】Wakimoto K, Blunt J, Carlos C, et al. Digital laminography assessment of the damage in concrete exposed to freezing temperatures[J]. Cement and Concrete Research, 2008, 38(10): 1232-1245.

【3】des Plantes B G Z. Eine neue methode zur differenzierung in der rontgenographie (planigraphies)[J]. Acta Radiologica, 1932, 13(2): 182-192.

【4】Grant D G. Tomosynthesis: a three-dimensional radiographic imaging technique[J]. IEEE Transactions on Biomedical Engineering, 1972, BME-19(1): 20-28.

【5】O′Brien N S, Boardman R P, Sinclair I, et al. Recent advances in X-ray cone-beam computed laminography[J]. Journal of X-Ray Science and Technology, 2016, 24(5): 691-707.

【6】Zhou J, Maisl M, Reiter H, et al. Computed laminography for materials testing[J]. Applied Physics Letters, 1996, 68(24): 3500-3502.

【7】Sechopoulos I. A review of breast tomosynthesis. Part I. The image acquisition process[J]. Medical Physics, 2013, 40(1): 014301.

【8】Sechopoulos I. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications[J]. Medical Physics, 2013, 40(1): 014302.

【9】Maisl M, Porsch F, Schorr C. Computed laminography for X-ray inspection of lightweight constructions[J]. 2nd International Symposium on NDT in Aerospace, 2010: 2-8.

【10】Fu J, Jiang B H, Li B. Large field of view computed laminography with the asymmetric rotational scanning geometry[J]. Science China Technological Sciences, 2010, 53(8): 2261-2271.

【11】Wei Z H, Yuan L L, Liu B D, et al. A micro-CL system and its applications[J]. Review of Scientific Instruments, 2017, 88(11): 115107.

【12】Que J M, Cao D Q, Zhao W, et al. Computed laminography and reconstruction algorithm[J]. Chinese Physics C, 2012, 36(8): 777-783.

【13】Kak A C, Slaney M, Wang G. Principles of computerized tomographic imaging[J]. Medical Physics, 2002, 29(1): 107-107.

【14】Ye Y B, Wang G. Filtered backprojection formula for exact image reconstruction from cone-beam data along a general scanning curve[J]. Medical Physics, 2005, 32(1): 42-48.

【15】Wu W W, Yu H Y, Cong W X, et al. Theoretically exact backprojection filtration algorithm for multi-segment linear trajectory[J]. Physics in Medicine & Biology, 2018, 63(1): 015037.

【16】Ma C X, Hu J J, Yan B. Optimization of fan-beam CT filtered backprojection reconstruction algorithm[J]. Laser & Optoelectronics Progress, 2012, 49(9): 091103.
马晨欣, 胡君杰, 闫镔. CT扇形束滤波反投影图像重建算法优化[J]. 激光与光电子学进展, 2012, 49(9): 091103.

【17】Liu F L, Yu H Y, Cong W X, et al. Top-level design and pilot analysis of low-end CT scanners based on linear scanning for developing countries[J]. Journal of X-Ray Science and Technology, 2014, 22(5): 673-686.

【18】Wu W W, Yu H Y, Wang S Y, et al. BPF-type region-of-interest reconstruction for parallel translational computed tomography[J]. Journal of X-Ray Science and Technology, 2017, 25(3): 487-504.

【19】Wu W W, Quan C, Liu F L. Filtered back-projection image reconstruction algorithm for opposite parallel linear CT scanning[J]. Acta Optica Sinica, 2016, 36(9): 0911009.
伍伟文, 全超, 刘丰林. 相对平行直线扫描CT滤波反投影图像重建[J]. 光学学报, 2016, 36(9): 0911009.

【20】Gao H X, Luo L, Luo Y H, et al. Improved stochastic CT reconstruction based on particle swarm optimization for limited-Angle sparse projection data[J]. Acta Optica Sinica, 2018, 38(1): 0111003.
高红霞, 罗澜, 骆英浩, 等. 角度受限下稀疏投影数据的改进粒子群优化随机CT重建[J]. 光学学报, 2018, 38(1): 0111003.

【21】Gordon R, Bender R, Herman G T. AlgebraicReconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471-481.

【22】Andersen A H, Kak A C. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm[J]. Ultrasonic Imaging, 1984, 6(1): 81-94.

【23】Yu H Y, Wang G. Compressed sensing based interior tomography[J]. Physics in Medicine and Biology, 2009, 54(9): 2791-2805.

【24】Lu X. Limited Angle computed tomography recontruction algorithm based on multiplicative regularization method[J]. Acta Optica Sinica, 2010, 30(5): 1285-1290.
卢孝强, 孙恰. 基于乘性正则化的有限角度CT重建算法[J]. 光学学报, 2010, 30(5): 1285-1290.

【25】Gao Y, Yun L J, Shi J S, et al. Enhancement dark channel algorithm of fog image based on the TV model[J]. Chinese Journal of Lasers, 2015, 42(8): 0809001.
高银, 云利军, 石俊生, 等. 基于TV模型的暗原色理论雾天图像复原算法[J]. 中国激光, 2015, 42(8): 0809001.

【26】Wu W W, Yu H Y, Gong C C, et al. Swinging multi-source industrial CT systems for aperiodic dynamic imaging[J]. Optics Express, 2017, 25(20): 24215-24235.

引用该论文

Wang Shaoyu,Wu Weiwen,Gong Changcheng,Liu Fenglin. Study of Parallel Translation Computed Laminography Imaging[J]. Acta Optica Sinica, 2018, 38(12): 1211002

王少宇,伍伟文,龚长城,刘丰林. 相对平行直线扫描计算机分层成像研究[J]. 光学学报, 2018, 38(12): 1211002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF