首页 > 论文 > 激光与光电子学进展 > 55卷 > 12期(pp:120001--1)

细胞激光器研究进展及应用综述

Research Progress and Application of Cell Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

细胞激光器是激光光子学和生命科学交叉领域的前沿研究方向, 其工作原理是, 在流体环境中, 将荧光蛋白、生物兼容的荧光染料及荧光素等和细胞有机结合在一起, 在谐振腔光反馈作用下使弱信号得到振荡放大实现细胞的激光输出。详细阐述了基于法布里-珀罗腔和回音壁模式微腔的细胞激光器的研究现状和基本原理, 由于谐振腔对光信号的反馈放大作用, 与传统的荧光信号相比, 激光信号能够有效增强传感探测的灵敏度, 提高分辨率。通过分析细胞等生物组织中发射激光的光谱和模式等信息来研究细胞内部的生理变化过程, 为医学治疗诊断、生物材料三维超分辨成像及可集成光源研究等提供新的技术和设计思路。

Abstract

Cell lasers is a frontier interdisciplinary research field of laser photonics and life sciences, the principle of which is that, under the optical feedback of the cavity, the weak signal can be oscillated and amplified via the combination of fluorescent protein, bio-compatible fluorescent dye and luciferin into cells in the fluidic environment. We present a detailed discussion about the research status and basic principles of Fabry-Perot cavity and whispering-gallery-mode microcavity. Laser-based detection can effectively enhance the sensitivity and resolution compared with the tradition fluorescence-based detection, benefitting from the feedback amplification of cavity. The physiological changes inside cells are studied with the analysis of the spectra and modes of the cell laser emission simultaneously. It′ll provide new technologies and design ideas for medical diagnosis, three-dimensional super-resolution imaging of biomaterials and integrated light source research.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:Q631

DOI:10.3788/lop55.120001

所属栏目:综述

基金项目:国家自然科学基金(61378088)

收稿日期:2018-05-18

修改稿日期:2018-06-08

网络出版日期:2018-06-11

作者单位    点击查看

杜梦聪:北京工业大学激光工程研究院, 北京 1001242北京市激光应用技术工程技术研究中心, 北京 100124
刘倩倩:北京工业大学激光工程研究院, 北京 1001242北京市激光应用技术工程技术研究中心, 北京 100124
Marion Lang:北京工业大学激光工程研究院, 北京 1001242北京市激光应用技术工程技术研究中心, 北京 100124
王秀翃:北京工业大学激光工程研究院, 北京 1001242北京市激光应用技术工程技术研究中心, 北京 100124
王璞:北京工业大学激光工程研究院, 北京 1001242北京市激光应用技术工程技术研究中心, 北京 100124

联系人作者:王秀翃(wxh2012@bjut.edu.cn)

【1】Zhao K H, Zhong X H. Optics[M]. Beijing: Peking University Press, 1984.
赵凯华, 钟锡华. 光学[M]. 北京: 北京大学出版社, 1984.

【2】Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187: 493-494.

【3】Zhao B L. The latest development of solid-state lasers[J]. Laser & Optoelectronics Progress, 1981, 18(9): 1-10.
赵伯林. 固体激光器的最近进展[J]. 激光与光电子学进展, 1981, 18(9): 1-10.

【4】Qing G. The new development of solid-state lasers[J]. Laser & Optoelectronics Progress, 1984, 21(5): 4-7.
卿光. 固体激光器的新发展[J]. 激光与光电子学进展, 1984, 21(5): 4-7.

【5】Hong G. The new development of solid-state lasers[J]. Laser & Optoelectronics Progress, 1986, 23(2): 10-14.
红光. 固体激光器的新进展[J]. 激光与光电子学进展, 1986, 23(2): 10-14.

【6】Gan Q J, Jiang B X, Zhang P D, et al. Research progress of high average power solid-state lasers[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010003.
甘啟俊, 姜本学, 张攀德, 等. 高平均功率固体激光器研究进展[J]. 激光与光电子学进展, 2017, 54(1): 010003.

【7】Werle P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1998, 54(2): 197-236.

【8】Lang J H, Gu B, Xu Y, et al. The GaN-based semiconductor materials LDs[J]. Laser Technology, 2003, 27(4): 321-324, 327.
郎佳红, 顾彪, 徐茵, 等. GaN基材料半导体激光器综述[J]. 激光技术, 2003, 27(4): 321-324, 327.

【9】Lou Q H, Zhou J, Zhu J Q, et al. Recent progress of high-power fiber lasers[J].2006, 35(2): 135-138.
楼祺洪, 周军, 朱健强, 等. 高功率光纤激光器研究进展[J]. 红外与激光工程, 2006, 35(2): 135-138.

【10】Wu Z L, Lou Q H, Zhou J, et al. Research progress of pumping methods for fiber laser[J]. Laser & Optoelectronics Progress, 2004, 41(4): 30-34.
吴中林, 楼祺洪, 周军, 等. 光纤激光器的抽运方法研究进展[J]. 激光与光电子学进展, 2004, 41(4): 30-34.

【11】Erickson D, Sinton D, Psaltis D. Optofluidics for energy applications[J]. Nature Photonics, 2011, 5: 583-590.

【12】Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 2006, 442(7101): 381-386.

【13】Monat C, Domachuk P, Eggleton B J. Integrated optofluidics: a new river of light[J]. Nature Photonics, 2007, 1: 106-114.

【14】Helbo B, Kristensen A, Menon A. A micro-cavity fluidic dye laser[J]. Journal of Micromechanics and Microengineering, 2003, 13(2): 307-311.

【15】Fan X D, White I M. Optofluidic microsystems for chemical and biological analysis[J]. Nature Photonics, 2011, 5: 591-597.

【16】Schmidt H, Hawkins A R. The photonic integration of non-solid media using optofluidics[J]. Nature Photonics, 2011, 5: 598-604.

【17】Gather M C, Yun S H. Single-cell biological lasers[J]. Nature Photonics, 2011, 5: 406-410.

【18】Lan X J. Laser Technology[M]. Beijing: Science Press, 2000.
蓝信钜. 激光技术[M]. 北京:科学出版社, 2000.

【19】Zhou B K, Gao Y Z, Chen T R, et al. Laser Principle[M]. 7th ed. Beijing: National Defense Industry Press, 2014.
周炳琨, 高以智, 陈倜嵘, 等. 激光原理[M]. 7版. 北京: 国防工业出版社, 2014.

【20】Balslev S, Kristensen A. Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments[J]. Optics Express, 2005, 13(1): 344-351.

【21】Li Z N, Zhang Z Y, Emery T, et al. Single mode optofluidic distributed feedback dye laser[J]. Optics Express, 2006, 14(2): 696-701.

【22】Sun Y, Fan X. Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers[J]. Angewandte Chemie, 2011, 124(5): 1236-1239.

【23】Chen Q S, Zhang X W, Sun Y Z, et al. Highly sensitive fluorescent protein FRET detection using optofluidic lasers[J]. Lab on a Chip, 2013, 13(14): 2679-2681.

【24】Aubry G, Kou Q, Soto-Velasco J, et al. A multicolor microfluidic droplet dye laser with single mode emission[J]. Applied Physics Letters, 2011, 98(11): 111111.

【25】Wu X, Chen Q S, Sun Y Z, et al. Bio-inspired optofluidic lasers with luciferin[J]. Applied Physics Letters, 2013, 102(20): 203706.

【26】Lacey S, White I M, Sun Y Z, et al. Versatile opto-fluidic ring resonator lasers with ultra-low threshold[J]. Optics Express, 2007, 15(23): 15523-15530.

【27】Sun Y Z, Shopova S I, Wu C S, et al. Bioinspired optofluidic FRET lasers via DNA scaffolds[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(37): 16039-16042.

【28】Zhang X W, Lee W, Fan X D. Bio-switchable optofluidic lasers based on DNA Holliday junctions[J]. Lab on a Chip, 2012, 12(19): 3673-3675.

【29】Schfer J, Mondia J P, Sharma R, et al. Quantum dot microdrop laser[J]. Nano Letters, 2008, 8(6): 1709-1712.

【30】Nizamoglu S Gather M C, Yun S H. All-biomaterial laser using vitamin and biopolymers[J]. Advanced Materials, 2013, 25(41): 5943-5947.

【31】Yang Y, Liu A Q, Lei L, et al. A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams[J]. Lab on a Chip, 2011, 11(18): 3182-3187.

【32】Shopova S I, Zhou H Y, Fan X D, et al. Optofluidic ring resonator based dye laser[J]. Applied Physics Letters, 2007, 90(22): 221101.

【33】Lee W, Fan X D. Intracavity DNA melting analysis with optofluidic lasers[J]. Analytical Chemistry, 2012, 84(21): 9558-9563.

【34】Qian S X, Snow J B, Tzeng H M, et al. Lasing droplets: highlighting the liquid-air interface by laser emission[J]. Science, 1986, 231(4737): 486-488.

【35】Moon H J, Chough Y T, An K. Cylindrical microcavity laser based on the evanescent-wave-coupled gain[J]. Physical Review Letters, 2000, 85(15): 3161-3164.

【36】Azzouz H, Alkhafadiji L, Balslev S, et al. Levitated droplet dye laser[J]. Optics Express, 2006, 14(10): 4374.

【37】Kiraz A, Sennaroglu A, Doanay S, et al. Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface[J]. Optics Communications, 2007, 276(1): 145-148.

【38】Jiang X S, Song Q H, Xu L, et al. Microfiber knot dye laser based on the evanescent-wave-coupled gain[J]. Applied Physics Letters, 2007, 90(23): 233501.

【39】Tanyeri M, Perron R, Kennedy I M. Lasing droplets in a microfabricated channel[J]. Optics Letters, 2007, 32(17): 2529-2531.

【40】Tang S K, Li Z Y, Abate A R, et al. A multi-color fast-switching microfluidic droplet dye laser[J]. Lab on a Chip, 2009, 9(19): 2767-2771.

【41】Humar M, Gather M C, Yun S H. Cellular dye lasers: lasing thresholds and sensing in a planar resonator[J]. Optics Express, 2015, 23(21): 27865-27879.

【42】Shimomura O, Johnson F H, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea[J]. Journal of Cellular and Comparative Physiology, 1962, 59(3): 223-239.

【43】Chen Y, Wei L N, Müller J D. Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(26): 15492-15497.

【44】Lu P, Vogel C, Wang R, et al. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation[J]. Nature Biotechnology, 2007, 25: 117-124.

【45】Gather M C, Yun S H. Lasing from Escherichia coli bacteria genetically programmed to express green fluorescent protein[J]. Optics Letters, 2011, 36(16): 3299-3301.

【46】Vahala K J. Optical microcavities[J]. Nature, 2003, 424(6950): 839-846.

【47】He L N, zdemir K, Yang L. Whispering gallery microcavity lasers[J]. Laser & Photonics Reviews, 2012, 7(1): 60-82.

【48】Ashkin A, Dziedzic J M. Observation of resonances in the radiation pressure on dielectric spheres[J]. Physical Review Letters, 1977, 38(23): 1351-1354.

【49】Tzeng H M, Wall K F, Long M B, et al. Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances[J]. Optics Letters, 1984, 9(11): 499-501.

【50】Yang L, Vahala K J. Gain functionalization of silica microresonators[J]. Optics Letters, 2003, 28(8): 592-594.

【51】Takashima H, Fujiwara H, Takeuchi S, et al. Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus[J]. Applied Physics Letters, 2007, 90(10): 101103.

【52】Snee P T, Chan Y, Nocera D G, et al. Whispering-gallery-mode lasing from a semiconductor Nanocrystal/Microsphere resonator composite[J]. Advanced Materials, 2005, 17(9): 1131-1136.

【53】McCall S L, Levi A F J, Slusher R E, et al. Whispering‐gallery mode microdisk lasers[J]. Applied Physics Letters, 1992, 60(3): 289-291.

【54】Van Campenhout J, Rojo-Romeo P, Regreny P, et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit[J]. Optics Express, 2007, 15(11): 6744-6749.

【55】Chao C Y, Guo L J. Polymer microring resonators fabricated by nanoimprint technique[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2002, 20(6): 2862.

【56】Dong C H, He L, Xiao Y F, et al. Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing[J]. Applied Physics Letters, 2009, 94(23): 231119.

【57】Humar M, Yun S H. Intracellular microlasers[J]. Nature Photonics, 2015, 9: 572-576.

【58】Fan X D, Yun S H. Optofluidic bio-Lasers: concept and applications[J]. Nature Methods, 2014, 11: 141-147.

【59】Humar M, Yun S H. Whispering-gallery-mode emission from biological luminescent protein microcavity assemblies[J]. Optica, 2017, 4(2): 222-228.

【60】Schubert M, Volckaert K, Karl M, et al. Lasing in live mitotic and non-phagocytic cells by efficient delivery of microresonators[J]. Scientific Reports, 2017, 7: 40877.

【61】Humar M, Upadhya A, Yun S H. Spectral reading of optical resonance-encoded cells in microfluidics[J]. Lab on a Chip, 2017, 17(16): 2777-2784.

【62】Kim Y R, Kim S, Choi J W, et al. Bioluminescence-activated deep-tissue photodynamic therapy of cancer[J]. Theranostics, 2015, 5(8): 805-817.

【63】Hell S W. Far-field optical nanoscopy[J]. Science, 2007, 316(5828): 1153-1158.

【64】Wang M C, Min W, Freudiger C W, et al. RNAi screening for fat regulatory genes with SRS microscopy[J]. Nature Methods, 2011, 8: 135-138.

【65】Min W, Lu S J, Chong S S, et al. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy[J]. Nature, 2009, 461(7267): 1105-1109.

【66】Wang P, Slipchenko M N, Mitchell J, et al. Far-field imaging of non-fluorescent species with sub-diffraction resolution[J]. Nature Photonics, 2013, 7: 449-453.

【67】Polson R C, Vardeny Z V. Random lasing in human tissues[J]. Applied Physics Letters, 2004, 85(7): 1289-1291.

【68】Nadkarni S K, Bouma B E, Helg T, et al. Characterization of atherosclerotic plaques by laser speckle imaging[J]. Circulation, 2005, 112(6): 885-892.

【69】Humar M, Dobravec A, Zhao X W, et al. Biomaterial microlasers implantable in the cornea, skin, and blood[J]. Optica, 2017, 4(9): 1080-1085.

【70】Prasad P N. Introduction to biophotonics[M]. He S L, Trans. Zhejiang: Zhejiang University Press, 2006.
普拉萨德. 生物光子学导论[M]. 何赛灵, 译. 浙江: 浙江大学出版社, 2006.

引用该论文

Du Mengcong,Liu Qianqian,Marion Lang,Wang Xiuhong,Wang Pu. Research Progress and Application of Cell Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120001

杜梦聪,刘倩倩,Marion Lang,王秀翃,王璞. 细胞激光器研究进展及应用综述[J]. 激光与光电子学进展, 2018, 55(12): 120001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF