高功率掺镱光纤激光振荡器研究进展
Research Progress in High Power Ytterbium Doped Fiber Laser Oscillator
摘要
与采用主振荡功率放大结构的光纤激光器相比, 光纤激光振荡器具有结构紧凑、成本低廉、抗反射回光能力强、稳定性好等优点。随着光纤器件和工艺的发展, 全光纤激光振荡器实现了5 kW近衍射极限输出。围绕掺镱光纤激光振荡器, 详细介绍了空间结构振荡器和全光纤结构振荡器的研究进展及其面临的问题。根据高功率光纤激光振荡器的主要限制因素非线性效应和模式不稳定, 从特殊设计增益光纤和振荡器全局优化设计两方面, 初步探讨了进一步提升高功率光纤振荡器功率的技术途径, 以期为实现万瓦量级单模光纤激光振荡器提供参考。
Abstract
Compared with master oscillator power amplifiers, fiber laser oscillators have the advantages of compact structure, low cost, strong anti-reflection light return capability, and good stability. With the development of fiber optic devices and processes, all-fiber laser oscillators achieve a near-diffraction limit output of 5 kW. As for the ytterbium-doped fiber laser oscillator, the research progress and problems faced by the space-coupled fiber oscillator and the all-fiber oscillator are introduced in detail. According to the nonlinear effects and mode instabilities that are the main limiting factors of high-power fiber laser oscillators, the technical approach to further increase the power of high-power fiber laser oscillators is discussed preliminarily, from the aspects of specially designed gain optical fibers and global oscillator optimization, in order to provide reference for the realization of single-mode fiber laser oscillators with 10 kW output.
中图分类号:TN248
所属栏目:综述
基金项目:国家自然科学基金(61505260, 61735007)
收稿日期:2018-06-01
修改稿日期:2018-06-26
网络出版日期:2018-07-05
作者单位 点击查看
王小林:国防科技大学前沿交叉学科学院, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073
史尘:国防科技大学前沿交叉学科学院, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073
张汉伟:国防科技大学前沿交叉学科学院, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073
奚小明:国防科技大学前沿交叉学科学院, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073
周朴:国防科技大学前沿交叉学科学院, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073
许晓军:国防科技大学前沿交叉学科学院, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073
【1】Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [Invited][J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.
【2】Nilsson J, Payne D N. High-power fiber lasers[J]. Science, 2011, 332(6032): 921-922.
【3】Zervas M N, Codemard C A. Highpower fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241.
【4】Zervas M N. High power ytterbium-doped fiber lasers: fundamentals and applications[J]. International Journal of Modern Physics B, 2014, 28(12): 1442009.
【5】Dominic V, MacCormack S, Waarts R, et al. 110 W fibre laser[J]. Electronics Letters, 1999, 35(14): 1158-1160.
【6】Gapontsev V, Gapontsev D, Platonov N, et al. 2 kW CW ytterbium fiber laser with record diffraction-limited brightness[C]∥Conference on Lasers and Electro-Optics Europe, 2005: 508.
【7】Product information[EB/OL]. [2018-03-02]. http:∥www.nufern.com/tech_center/#.
【8】Yu H, Kliner D A V, Liao K, et al. 1.2-kW single-mode fiber laser based on 100-W high-brightness pump diodes[J]. Proceedings of SPIE, 2012, 8237: 82370G.
【9】O-LASE-easy integration to laser system[EB/OL]. [2018-03-02]. http:∥www.corelase.fi/products/o-lase/.
【10】RedPOWER OEM[EB/OL]. [2018-03-02]. https:∥www.spilasers.com/industrial-fiber-lasers/redpower/redpower-oem/ .
【11】O′Connor M, Gapontsev V, Fomin V, et al. Power scaling of SM fiber lasers toward 10 kW[C]∥Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA, 2009: CThA3.
【12】Shiner B. The impact of fiber laser technology on the world wide material processing market[C]∥Conference on Lasers and Electro-Optics Europe, 2013: AF2J.1.
【13】Dai S J, He B, Zhou J, et al. 1.5 kW near single-mode all-fiber laser[J]. Chinese Journal of Lasers, 2013, 40(7): 0702001.
代守军, 何兵, 周军, 等. 1.5 kW近单模全光纤激光器[J]. 中国激光, 2013, 40(7): 0702001.
【14】Yu H L, Zhang H W, Lv H, et al. 315 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser[J]. Applied Optics, 2015, 54(14): 4556-4560.
【15】Wang X L, Zhang H W, Tao R M, et al. laser diode pumped 4.1 kW all-fiber laser with master oscillator power amplification configuration[J]. Chinese Journal of Lasers, 2016, 43(5): 1105001.
王小林, 张汉伟, 陶汝茂, 等. LD抽运主振荡功率放大结构4.1 kW全光纤激光器[J]. 中国激光, 2016, 43(5): 1105001.
【16】Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10192.
【17】Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Optics Express, 2013, 21(2): 1944-1971.
【18】Haarlammert N,de Vries O, Liem A, et al. Build up and decay of mode instability in a high power fiber amplifier[J]. Optics Express, 2012, 20(12): 13274-13283.
【19】Tao R M, Wang X L, Xiao H, et al. Theoretical study of the threshold power of mode instability in high-power fiber amplifiers[J]. Acta Optica Sinica, 2014, 34(1): 0114002.
陶汝茂, 王小林, 肖虎, 等. 高功率光纤放大器中模式不稳定阈值功率的理论研究[J]. 光学学报, 2014, 34(1): 0114002.
【20】Mohammed W, Gu X. Fiber Bragg grating in large-mode-area fiber for high power fiber laser applications[J]. Applied Optics, 2010, 49(28): 5297-5301.
【21】History of MAX Photonics[EB/OL]. [2018-03-05]. http:∥www.maxphotonics.com/qylc.htm.
【22】Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1 kW continuous-wave output power[C]∥Conference on Lasers and Electro-Optics Europe, 2004: PDP13.
【23】Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092.
【24】Jeong Y C, Boyland A J, Sahu J K, et al. Multi-kilowatt single-mode ytterbium-doped large-core fiber laser[J]. Journal of the Optical Society of Korea, 2009, 13(4): 416-422.
【25】Khitrov V, Minelly J D, Tumminelli R, et al. 3 kW single-mode direct diode-pumped fiber laser[J]. Proceedings of SPIE, 2014, 8961: 89610V.
【26】Xiao Y, Brunet F, Kanskar M, et al. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks[J]. Optics Express, 2012, 20(3): 3296-3301.
【27】Yu H L, Wang X L, Tao R M, et al. 15 kW, near-diffraction-limited, high-efficiency, single-end-pumped all-fiber-integrated laser oscillator[J]. Applied Optics, 2014, 53(34): 8055-8059.
【28】Shima K, Ikoma S, Uchiyama K, et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing[J]. Proceedings of SPIE, 2018, 10512: 105120C.
【29】Shi W, Fang Q, Xu Y, et al. 1.63 kW monolithic continuous-wave single-mode fiber laser oscillator[J]. Journal of Optoelectronics·Laser, 2015, 26(4): 662-666.
史伟, 房强, 许阳, 等. 1.63 kW单纤单振单模连续全光纤激光器[J]. 光电子·激光, 2015, 26(4): 662-666.
【30】Mashiko Y, Nguyen H K, Kashiwagi M, et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression[J]. Proceedings of SPIE, 2016, 9728: 972805.
【31】Yang B L, Zhang H W, Shi C, et al. Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme[J]. Optics Express, 2016, 24(24): 27828-27835.
【32】Yang B L, Zhang H W, Shi C, et al. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability[J]. Journal of Optics, 2018, 20(2): 025802.
【33】Xu Y, Fang Q, Xie Z X, et al. Single fiber quasi-single mode 2 kW all-fiber laser oscillator based on single-end 915 nm semiconductor laser forward-pumping[J]. Chinese Journal of Lasers, 2018, 43(4): 0401003.
许阳, 房强, 谢兆鑫, 等. 基于915 nm半导体激光单端前向抽运的单纤准单模2 kW全光纤激光振荡器[J]. 中国激光, 2018, 43(4): 0401003.
【34】Zhang X, Zhang F, Zheng W, et al. 2-kW single-mode fiber laser employing bidirectional-pump scheme[J]. Proceedings of SPIE, 2017, 10619: 106190G.
【35】Ikoma S, Nguyen H K, Kashiwagi M, et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing[J]. Proceedings of SPIE, 2017, 10083: 100830Y.
【36】Yang B L, Zhang H W, Ye Q, et al. 4.05 kW monolithic fiber laser oscillator based on home-made large mode area fiber Bragg gratings[J]. Chinese Optics Letters, 2018, 16(3): 031407.
【37】Yang B L, Shi C, Zhang H W, et al. Monolithic fiber laser oscillator with record high power[J]. Laser Physics Letters, 2018, 15(7): 075106.
【38】Liao L, Liu P, Xing Y B, et al. A kW continuous-wave ytterbium-doped all-fiber laser oscillator with domestic fiber components and gain fiber[J]. Chinese Physics Letters, 2015, 32(6): 064201.
【43】Yang B L, Zhang H W, Wang X L, et al. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW[J]. Journal of Optics, 2016, 18(10): 105803.
【44】Yla-Jarkko K H, Codemard C, Singleton J, et al. Low-noise intelligent cladding-pumped L-band EDFA[J]. IEEE Photonics Technology Letters, 2003, 15(7): 909-911.
【47】Ma X, Liu C H, Chang G Q, et al. Angular-momentum coupled optical waves in chirally-coupled-core fibers[J]. Optics Express, 2011, 19(27): 26515-26528.
【48】Dong L, Peng X, Li J. Leakage channel optical fibers with large effective area[J]. Journal of the Optical Society of America B, 2007, 24(8): 1689-1697.
【49】Stutzki F, Jansen F, Eidam T, et al. High average power large-pitch fiber amplifier with robust single-mode operation[J]. Optics Letters, 2011, 36(5): 689-691.
【50】Jain D, Jung Y, Nunez-Velazquez M, et al. Extending single mode performance of all-solid large-mode-area single trench fiber[J]. Optics Express, 2014, 22(25): 31078-31091.
【51】Kashiwagi M, Saitoh K, Takenaga K, et al. Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers[J]. Optics Express, 2012, 20(14): 15061-15070.
【52】Ma X, Zhu C, Hu I, et al. Single-mode chirally-coupled-core fibers with larger than 50 μm diameter cores[J]. Optics Express, 2014, 22(8): 9206-9219.
【53】Limpert J, Stutzki F, Jansen F, et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation[J]. Light: Science & Applications, 2012, 1(4): e8.
【54】Kanskar M, Zhang J, Koponen J, et al. Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications[J]. Proceedings of SPIE, 2018, 10512: 105120F.
【55】Tao R M, Ma P F, Wang X L, et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 2015, 17(4): 045504.
【56】Tao R M, Ma P F, Wang X L, et al. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers[J]. Laser Physics Letters, 2017, 14(2): 025002.
【57】Chai Q, Liu Y, Zhang J, et al. Asymmetric transmission and reflection spectra of FBG in single-multi-single mode fiber structure[J]. Optics Express, 2015, 23(9): 11665-11673.
【58】Jauregui C, Eidam T, Limpert J, et al. Impact of modal interference on the beam quality of high-power fiber amplifiers[J]. Optics Express, 2011, 19(4): 3258-3271.
【59】Zhu J, Zhou P, Ma Y, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 2011, 19(19): 18645-18654.
引用该论文
Ye Yun,Wang Xiaolin,Shi Chen,Zhang Hanwei,Xi Xiaoming,Zhou Pu,Xu Xiaojun. Research Progress in High Power Ytterbium Doped Fiber Laser Oscillator[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120006
叶云,王小林,史尘,张汉伟,奚小明,周朴,许晓军. 高功率掺镱光纤激光振荡器研究进展[J]. 激光与光电子学进展, 2018, 55(12): 120006
被引情况
【1】王世杰,张志伦,曹驰,林贤峰,邢颍滨,廖雷,李进延. 利用国产光纤实现平均功率761 W、脉冲能量17.5 mJ纳秒脉冲激光输出. 中国激光, 2019, 46(12): 1215002--1