首页 > 论文 > 激光与光电子学进展 > 55卷 > 12期(pp:121601--1)

基于三维耦合的多波段宽带电磁诱导透明分析

Analysis of Multiband and Broadband Electromagnetically Induced Transparency Based on Three-Dimensional Coupling

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了一种平面-立式相结合且能够通过三维耦合方式实现多波段宽带电磁诱导透明效应的超材料。通过3个立式开口环与平面闭合方环相互耦合, 该超材料结构实现了0.68 THz与1.09 THz双波段的电磁诱导透明现象, 带宽分别可达0.38 THz与0.74 THz。通过拆分表面金属结构并相互对比, 分别研究了该超材料结构实现多波段与宽带电磁诱导透明效应的机理, 同时分析了3个开口环的间距、臂长对电磁诱导透明强度与带宽的影响。仿真分析表明:该超材料结构能够于太赫兹波段实现多频点高强度的慢光效应, 并具有较高的折射率灵敏度, 在光缓存器件与折射率传感领域有一定的应用价值。

Abstract

In this paper, a planar and vertical combination of metamaterial that can realize the multiband and broadband electromagnetically induced transparency effect by three-dimensional coupling is designed. Through the coupling of three vertical split ring resonators(SRRs) and one planar square closed loop(SCL), the electromagnetically induced transparency of the metamaterial is realized at 0.68 THz and 1.09 THz. The bandwidth can reach 0.38 THz and 0.74 THz, respectively. By comparing and splitting the structures, the physical mechanism of electromagnetically inducing transparency through multiband and broadband is studied. Besides, the influences of the distance between the three SRRs and their arm-lengths on the intensity and bandwidth of the electromagnetically induced transparency are analyzed. The simulation show that the structure of metamaterial can achieve slow light effect with high intensity at multiple frequency points and high refractive index sensitivity in terahertz range. It has some application value in the field of optical buffer devices and refractive index sensing.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/lop55.121601

所属栏目:材料

基金项目:国家自然科学基金(61327006, 61620106014)

收稿日期:2018-04-22

修改稿日期:2018-06-28

网络出版日期:2018-07-08

作者单位    点击查看

李广森:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
延凤平:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
王伟:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
乔楠:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044

联系人作者:延凤平(fpyan@bjtu.edu.cn)

【1】Cai W S, Chettiar U K, Kildishev A V, et al. Optical cloaking with metamaterials[J]. Nature Photonics, 2007, 1(4): 224-227.

【2】Kussow A, Akyurtlu A, Angkawisittpan N. Optically isotropic negative index of refraction metamaterial[J]. Physica Status Solidi B, 2008, 245(5): 992-997.

【3】Gingrich M A, Werner D H. Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms[J]. Electronics Letters, 2005, 41(23): 1266-1267.

【4】Garcia N, Nieto-Vesperinas M. Is there an experimental verification of a negative index of refraction yet?[J]. Optics Letters, 2002, 27(11): 885-887.

【5】Shen C C, Li M Q, Zhou Y G, et al. Novel structure design of left-handed material with broadband and low loss[J]. Laser & Optoelectronics Progress, 2017, 54(9): 091602.
沈纯纯, 李民权, 周永光, 等. 一种新型的宽频带低损耗左手材料结构设计[J]. 激光与光电子学进展, 2017, 54(9): 091602.

【6】Tao H, Bingham C M, Pilon D, et al. A dual band terahertz metamaterial absorber[J]. Journal of Physics D, 2010, 43(22): 225102.

【7】Zhang B, Chen F, Duan P F, et al. Research on structure and characteristics of asymmetrical compound parabolic concentrator with plane absorber[J]. Acta Optica Sinica, 2017, 37(12): 1208002.
章波, 陈飞, 段鹏飞, 等. 平板吸收体非对称复合抛物聚光器结构及特性研究[J]. 光学学报, 2017, 37(12): 1208002.

【8】Ding L, Wu Q Y, Song J F, et al. Perfect broadband terahertz antireflection by deep-subwavelength, thin, lamellar metallic gratings[J]. Advanced Optical Materials, 2013, 1(12): 910-914.

【9】Thoman A, Kern A, Helm H, et al. Nanostructured gold films as broadband terahertz antireflection coatings[J]. Physical Review B, 2008, 77(19): 195405.

【10】Kim J, Soref R, Buchwald W R. Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull′s-eye-shaped metamaterial[J]. Optics Express, 2010, 18(17): 17997-18002.

【11】Sun L, Wang X S, Liang X, et al. Tunable plasmonically induced transparency with unsymmetrical resonators[J]. Laser & Optoelectronics Progress, 2016, 53(1): 012302.
孙林, 王小赛, 梁修业, 等. 非对称共振腔结构的可调等离子体诱导透明效应[J]. 激光与光电子学进展, 2016, 53(1): 012302.

【12】Sun Y, Shi T, Liu J, et al. Terahertz label-free bio-sensing with EIT-like metamaterials[J]. Acta Optica Sinica, 2016, 36(3): 0328001.

【13】Savo S, Casse B D F,Sridhar S. Observation of slow-light in a metamaterials waveguide at microwave frequencies[J]. Applied Physics Letters, 2011, 98(17): 171907.

【14】O′Hara J F, Singh R, Brener I, et al. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations[J]. Optics Express, 2008, 16(3): 1786-1795.

【15】Panahpour A, Silani Y, Farrokhian M, et al. Coupled plasmon-exciton induced transparency and slow light in plexcitonic metamaterials[J]. Journal of the Optical Society of America B, 2012, 29(9): 2297-2308.

【16】Tang Y Z, Ma W Y, Wei Y H, et al. A tunable terahertz metamaterial and its sensing performance[J]. Opto-Electronic Engineering, 2017, 44(4): 453-457.
唐雨竹, 马文英, 魏耀华, 等. 一种旋转可调的太赫兹超材料及其传感特性[J]. 光电工程, 2017, 44(4): 453-457.

【17】Han H X, Potyomina L G, Darinskii A A, et al. Phonon interference and thermal conductance reduction in atomic-scale metamaterials[J]. Physical Review B, 2014, 89(18): 180301.

【18】Krause M, Stollenwerk A, Awo-Affouda C, et al. Combined molecular beam epitaxy low temperature scanning tunneling microscopy system: enabling atomic scale characterization of semiconductor surfaces and interfaces[J]. Journal of Vacuum Science & Technology B, 2005, 23(4): 1684-1689.

【19】Zhu Y F, Lin J. Sub-Doppler light amplification in a coherently pumped atomic system[J]. Physical Review A, 1996, 53(3): 1767-1774.

【20】Chiam S Y,Singh R, Rockstuhl C, et al. Analogue of electromagnetically induced transparency in a terahertz metamaterial[J]. Physical Review B, 2009, 80(15): 153103.

【21】Tang B, Dai L, Jiang C. Electromagnetically induced transparency in hybrid plasmonic-dielectric system[J]. Optics Express, 2011, 19(2): 628-637.

【22】Chen J. Tunable slow light in semiconductor metamaterial in a broad terahertz regime[J]. Journal of Applied Physics, 2010, 107(9): 093104.

【23】Zhao X L, Yuan C, Zhu L, et al. Graphene-based tunable terahertz plasmon-induced transparency metamaterial[J]. Nanoscale, 2016, 8(33): 15273-15280.

【24】Zhu L, Meng F Y, Fu J H, et al. Multi-band slow light metamaterial[J]. Optics Express, 2012, 20(4): 4494-4502.

【25】Ning R X, Bao J, Jiao Z. Wide band electromagnetically induced transparency in graphene metasurface of composite structure[J]. Acta Physica Sinica, 2017, 66(10): 100202.
宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究[J]. 物理学报, 2017, 66(10): 100202.

【26】Liu N, Weiss T, Mesch M, et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing[J]. Nano Letters, 2010, 10(4): 1103-1107.

【27】Bückmann T, Stenger N, Kadic M, et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography[J]. Advanced Materials, 2012, 24(20): 2710-2714.

【28】Jin X R, Park J, Zheng H Y, et al. Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling[J]. Optics Express, 2011, 19(22): 21652-21657.

【29】Li H, Yuan L H, Zhou B, et al. Ultrathin multiband gigahertz metamaterial absorbers[J]. Journal of Applied Physics, 2011, 110(1): 014909.

【30】Su S S, Yan F P, Tan S Y, et al. Design of antireflection coating based on broadband terahertz metamaterial with stand-up structure[J]. Chinese Journal of Lasers, 2018, 45(4): 0414001.
苏思思, 延凤平, 谭思宇, 等. 基于站立结构的宽带太赫兹超材料增透膜设计[J]. 中国激光, 2018, 45(4): 0414001.

【31】Jiao D, Lu M Y, Michielssen E, et al. A fast time-domain finite element-boundary integral method for electromagnetic analysis[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(10): 1453-1461.

【32】Sun H H, Yan F P, Tan S Y, et al. Simulation analysis on design of permeability-near-zero terahertz metamaterials[J]. Chinese Journal of Lasers, 2018, 45(6): 0614001.
孙慧慧, 延凤平, 谭思宇, 等. 磁导率近零太赫兹超材料设计的仿真分析[J]. 中国激光, 2018, 45(6): 0614001.

引用该论文

Li Guangsen,Yan Fengping,Wang Wei,Qiao Nan. Analysis of Multiband and Broadband Electromagnetically Induced Transparency Based on Three-Dimensional Coupling[J]. Laser & Optoelectronics Progress, 2018, 55(12): 121601

李广森,延凤平,王伟,乔楠. 基于三维耦合的多波段宽带电磁诱导透明分析[J]. 激光与光电子学进展, 2018, 55(12): 121601

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF